gg HABARI

LIENT LIBRARIES

Getting started with

Habari Client for RabbitMQ
Version 6.12

2 Habari Client for RabbitMQ 6.12

LIMITED WARRANTY

No warranty of any sort, expressed or implied, is provided
in connection with the library, including, but not limited
to, implied warranties of merchantability or fitness for a
particular purpose. Any cost, loss or damage of any sort
incurred owing to the malfunction or misuse of the library
or the inaccuracy of the documentation or connected with the
library in any other way whatsoever is solely the
responsibility of the person who incurred the cost, loss or
damage. Furthermore, any illegal use of the library is
solely the responsibility of the person committing the
illegal act.

Trademarks

Habari is a trademark or registered trademark of Michael Justin in Germany and/or other countries.
Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions. The
Android robot is reproduced or modified from work created and shared by Google and used according to
terms described in the Creative Commons 3.0 Attribution License. Embarcadero, the Embarcadero
Technologies logos and all other Embarcadero Technologies product or service names are trademarks,
service marks, and/or registered trademarks of Embarcadero Technologies, Inc. and are protected by the
laws of the United States and other countries. IBM and WebSphere are trademarks of International
Business Machines Corporation in the United States, other countries, or both. HornetQ, WildFly, JBoss and
the JBoss logo are registered trademarks or trademarks of Red Hat, Inc. Mac OS is a trademark of Apple
Inc., registered in the U.S. and other countries. Oracle, WebLogic and Java are registered trademarks of
Oracle and/or its affiliates. Pivotal, RabbitMQ and the RabbitMQ logo are trademarks and/or registered
trademarks of GoPivotal, Inc. in the United States and/or other countries. Other brands and their
products are trademarks of their respective holders.

Errors and omissions excepted. Specifications subject to change without notice.

Contents
Broker-specific information........c.ccviiimiiirirnrsre s s s s nn 7

)0 T o= 1 1 = 1 o o o TP -

2= LT =T 03 = 3 8
Development ENVIFONMENE. ... e 8
TCP/IP Communication Library . ..cooeiii i e e e 8
LSS T U L= 8

Installation StePS...ciiiciiiiiiiiiiiie i s s s s s s s s ara s naa s raara R RaRan R nn 8

Communication Adapters.....icciiiiiicmicsmresmre s s sss s ssss s sssansssssnnnsannnnns 9

83 o o To LT o o o oS 9
Configuration of communication adapters......ccviiiiiiiiiiiiii 9
Registration of communication adapter Class......ccoiiiiiiiiiiii i 9
Available communication adapters.. ... 10
Limitations of the Synapse communication adapter class.........ccoevviiiiiiiiiiiiiiiinnnnn. 10

The Programming Model.........ccoiiimimimimmsns s sssnsssssssansssanssnnnss 11

New simplified API......cccicciiiiiiiicirres i rs s s s s s ra s ssassasasssnsnnnnssnnsnnnnnnns 11

LT« Y o= 1 12

Quick Start Tutorial......cccviiiiiiie i srr s s s s s s s s s s na s saa s anm s annnnnnns 12
Setting Up the ProjeCh. ..o s 12
Adding code to the Project. ... e 12
20 1 g T o TSI [T 0.2 [J . 14
(@ oT=Tol g o gl aT=T 0 101 0V (= T= 1€ 14
8L 0] g =] BT 0 18] ol ol 1 [14

Connection Factory......ccivimiemmsmssnnsssnssssssansssssnsssssnnsssssnnssssnnnssssnnnsnssn L3

L0 3T o = R 15
Creation and configuration.....ccuiciveriesra i smserresran s s ssasssnssasssannsssnnsssnnssnnnnnss 15
Connection URL parameters.......ccveciicrmiimssmiemas s smssssassssassssssssssnssssannsnnnnsnns 17
Heart-beating SUP PO . ..o e e 17
Failover SUPPOrt.......cciciiii i v s s s v s s s na s s s na s na s na s aa s annnnas 17
Failover Transport OptioNS. i e e e e e raneeaans 17
2 =Tt =T o1] 1T T o oY o 18
YU] O R 1 il 2T ol =T o) P 19
UNSUBSCRIBE RECEIPE. cuttiiitiiiiiis it r et s st e e e e s e e s e e saneesane e sannnneeeanns 19
1 = A B2 2= o1 o1 19
(D) IS O(0]\ N = O I =T =1 | o 20

Connections and SEeSSIiONS.....ccuurrectssrsssssssssnssssnssnsssssssssssssannsnnsnsnnnnnnnns 2l

Connections use Stomp 1.2 by default........cccviciviiiiinnsriesmnresss s ssse s sssa s ssnannas 21
Step-by-Step EXampPle. i cciiciiiinrinssnassssas s s snasssnassassssasanssssnssnnnnssnsnnnnns 21
L@ A7 T 21
Add reqUIred UNIES. ..ot e e 21
(OIg=T- 1wl ale = I o T=1" A @fe]] =T o1 [o] o T 22
Connection URL Parameters. ..o ii i i i s s s v s e s s e e s s snnne e s snnne e s saannnnnnns 22

L@ ==Y] Lo = TS =17 o o 22

4 Habari Client for RabbitMQ 6.12

0 g To I o g IS Y =TT o] o P P 23

(@1 (o] o o = @ o o =T o oo o 1R 23
SeSSION LYPEeS OVeIVICW. . .ciiiiiiiin i s s ssessasssassanssansanssanssunnnsasnnsssnnssnnnnsnns 23
Transacted SeSSIONS. .t rieriria it rra s s s s s s aasrassaa s s saasaannaamsaannsannnnnnnnns 24
Create a transacted SESSION ... i it r e 24
Y=] Lo I 0 g S ET Y= Lo =T R 25
Committing @ tranSaCtioN. . ..ii i s 25
Rolling back @ transaction.o e 25
Transacted message acknowledgement... ..o 26

[0 =T 3 = oo T 3 27
0 o e LT o o o T o e 27
Create a new Destination........ciccveiieririnnmins s s s s s s s s s s s snnnns 27

L@ L= 1< 27

oo [0 28
Producer and CONSUM K .. iictiemtranmmsnsmsansssssssssssansssssssnssssnssssnnnssssnnnssnnns 29
Message ProducCer......c.ucuiiiiimsisn s s s s s s ssassansaanssasnnsannnssnnnssnnnnsnnnnsss 29
T S =T ol 0 ST Y= [T 29

i 1Tt T = 0o] T o 1= e 30

L E=TSTY= o T Y =] =T ot o] 30
SYNCRIONOUS RECEIVE. 11 iiueiietranriemraarrasssasrasssssmassssssasssssssnsssnsanssanssnssnnssnsnnnsnnnnss 30
Durable SubscCriptioNS.....cicciiiiririrars s s s s ssa s s ssnnsnnnnsnnns 32
DT Y= o] g 1 o e 1 o 1R 32

L@ 1=) o o] o 1R 32
Temporary QUEUES. . .cccctiiimmrsnsmmsssssmssassmsssssmssssssssssssssssssssanssnnsssssnnnnnnns 33
INtroduction......cciciii i s v s s s r s s r s r s a s aaananraannrannn 33
7 =Y VS Y] 0 o o o PP 33
(L] o] U] el I 7 =Y g =T 1= =T o | 33

Message OptioNS.....cccviicitiimissmmsassssssssssansssssnsssssnssssssssssnnnnnsnnnnnnnns 3%

Standard Properties....ccccuiciiiiieiiiriesrs s s s s sra s ssa s ann s anaaaannaarannnnanns 34
Properties for OUtgOING MESSAgES. . .uiuii i iieiirae s rae e s e saeeaneranernneeanneaans 34
Properties for iNCOMING MESSAGES. ... uuitiiiiitiiiii e aees 34

Reserved property NamM S i i i rierrasmssrasssnsrasmsssmsssssssasssssssssssssansssssanssnnnssnnns 35
=] 0] 0] 1= 35
Prefix for CUStOM headerS. ... e 36

1Y =] 1= ot o T o 36
Supported mMessage DrOKErS.ot 36

= T o =Tt T o e 37

INtroduction......cccciii i s v s s s r s r s r e r s aananaraannranns 37
U Lo LI = 10 0] o L= PP 37
Map Message TranS OrmMIE e e 37
Transformation Identifier.o e 38

Example ProducerTransform implementation with TStrings.........ccovviiiiiiii i, 39

5

object Messages.ll41
0 o o [T o o o T o e 41
(0o} [<Totll (U [T Y= To [I =T 1] 0] 0 1 1= o P 41

Simplified API......cccciiicimi s rs s ssr s s sssasssssnnssssnnnnsnsnnnsnsnnnnnnnnn 33

New interface tyPpes...cuiciiiriiiricitrsrr s srr s s s rra s rr s s r s sra s ara s ann s annnnnnnnnnn 43
IMQContext interface.......cvicviririririrsr i s s s s s s s s s s s nnnnnnns 43
IMQProducer interfaCe......ccvriermrerierseriessnsassessassassnsassesssnsssnssanssnnssnssnnssnnsnnnss 43
IMQConsumer iNterfacCe.....vciiriarinranss s s s ss s sansaa s s sansnasssnnsansnnnsnnannnss 44
Source code exXample......cciciiiiiiiiiiaa i s s raa s raaaraaa 44
] o] 33 | o T 45
Connection configuration.......cccuiciieiiciiiiriesrs v s s s s s s s r s 45
1] 01T)5 [t= [0 o PP 46
Sending heart-beat signals......cvcviiiiiirrasrnesmessse s s s ss s s s ssasssansssannnns 46
Checking for incoming heartbeats..........ccoccviiiiiiiiricsrss i s rr s s rre s s rna e n e 47
Reading server-side heartbeats........ccccviiiiiiicicsnisriesrs s rre s s s v s 47

Example Applications.....ccccciiciiimisnrsmnsssmssssssssss s ssssssssssnssssnnnsnsnnnn s 48

Shared units for demo projects........ccvcciiiririeimnrresnse s rrse s srra s ssra s aaanannns 49

L0 Y 3 T 1T 1 3 =] o 1o Yo 1 R 50
€=] 0] 1= 51

2 o o [T T o= ol I Y 1 52
= 1 01 1 52
Performance test......c.ccviiiririmirimmns i s s s s s s s s s s s s s nnnnnnns 54
Throughput test.......ccciiiiiii v s v s s s v s s s wa s r s n s nas 56
€=] 0] 1= 56
UnNit TeStS . iiiiiiiiitiiriini s srs s sra s s ssa s ssanssannssanssnnnsssnnnnnnnnnns 57
B0 1 oo X 1T ot o o o T 57
Test project configuration.......cccveiiiiverieinnrie s s s s s s ssa s s rannnsannnnas 57

1 Y o 1 57
(@] u o] o= I U] 1= P 57
=3 o T o T U 57

B =3 =T = o] 1] o o] o T 58
S To U1 =T 0 g 1= L= 58

Test destiNatioNS. . i e 58

L 0 1 1 e e 58
Logging with SLFA4P.........ccccciiiiiii i i s sn s s s s s s s s nns 59
B0 1 o X 1T ot o o o T 59
IDE and project configuration......c.ccveciicrriinsms s s s s ssss s s ssasssnsnnnsnnnns 59
371 0] o 59

I 74 | o 1= 59
LoggingHelper Unit......ccviciieimimiesmsm i s s sssnssa s ssasssnssassanssasssnssansssnnsasnnssnnnnss 59
Conditional Symbols.....cciicciiiimiicimismrs s irss s s s s ssa s s snannannnnns 61
L 0= T T o o R 61

Conditional symbols for release builds.......ccccvviciiiiiinicssnirn s s s srrrs s s s s rrrrs s rrenaes 61

6 Habari Client for RabbitMQ 6.12

HABARI_ALLOW_UNKNOWN_URL_PARAMS ... ittt 61
[AN 2 Y AN 2 0 T 1 61
HABARI _SSL SUPP O R T ...ttt it et et et r et e e e ea et e aeaaaeeaaneans 61
HABARI _USE _INTERCEPT ...ttt i v et ettt ettt et e e e vt e aa e e e aneenaereernneenns 62
HABARI_USE_INTERCEPT _STDOUT .. ettt it ee et e rieeevateeeane e enneeenneeeenees 62
Conditional symbols for unit test projects........cccvciiiiiiiiiic s i s srr s srrs s s e s e e 63
HABARI_TEST _OPTIONAL _UNIT S, ittt iiie ittt et et e ee e rae e eaneaeeaneanes 63
HABARL _ TES T SYNAPSE . ..o e e e 63

SSL/TLS SUupport...cccccrvimmsnmmsansmsnsmssssassssnsssnsssnnsssnsssnsssnnssnnssssnnssnsnnnnens 64

SSL communication adapter classes.....ccuicvimirrarrmsnriesranrressssansssanssnannsnnnnnns 64
Do B F = P 64
1S3 Il oo 18 L= o o PR P 64

INAY SSL DM uuciiuciueniamriesuansiassansaassasssassassaassssssassansaasssnssansanssanssnnsssnnssnnnsnnns 64
N0 65
=T] 0] 1= T U)o] 65

£ T 0T 5 Lo] o 66

Useful UnitSlll67
BTStreamHelper Unit....ccoociiiiiiieiriire s s sra s s s srm s s s s s a s rannnnnnnnns 67
BTJavaPlatform unit.......cccciiiiiii i i srr s rr s rr s ra s s r s r s s r s rrr s rannnn s 67

Library Limitations......ccccciiiiiciicin s csns s s s s ssss s ssnsnsssnssnnnsnnan s 068

i LTt T =T 00 T 3 T U 3 1 =T e 68
How do I implement synchronous receive from multiple destinations?................... 68
LY e T o0 gl Y o 7= o o =T P 68
Only string data type supported by StomMp..ccciiiiiiiii 68
Multi threading......ccicciiiiiiii i s s s s s s s s s s s ra s s s s s r s rnannnnnnnns 68
Free Pascal specific restrictions.....ccccciiciiiicinrssnrsssnns s s s srrn s ssr s sns s snn s nnnnnns 69
Broker-specific limitations......c.ccvcveririniriiera i s s s s s s s snanas 69
B] a1 (o Te ST =ET =) T o = 69
Other broker specific ImitationS.ovvii i e 69

Frequently Asked Questions.......iccivimmimmnnsnsssssssssssssssssssssnsssnsssnnssnnaa 70

Technical qUESTIONS...iciiiric i i sr s s s s s s ra s s s rasra s a s nn s aannnannnnns 70
Why am I getting 'undeclared identifier IndyTextEncoding_UTF8'?.........ccccovvinnnn .. 70
Why am I getting ‘Undeclared identifier: 'TimeSeparator''?......c.cooviiiiiiiiiiiinnnnnns 70
Why am I getting 'Found no matching consumer' errors?.......ccvvieviviiiiniiriernnennns. 70
Does the library support non-Unicode Delphi versions?.......cccvviiiiiiiiiiiiiiiieiiinnnans 72
How can the client application detect network connection 10SS?........cvvviviviiiiinnnnnn. 72

ONIINE RESOUINCES. . ititrarnnrsnnnnnnnssssssssssssssssssnsssnsnnsssssnsssnnnnnssnnnnnnnnnnnnnnns 73

Third-party libraries.......ccviciiiiiiiieinis e s v s s s s s s s sr s sssa s nannsnnnnnns 73
1 Lo P 73
1 I 2 PP 73
JSONDAta0 D LS. .ttt 73
R =] 1= 73
R 5 =L ol) T ot= o o = 74
Online articles.....ciiciiiiii i v s s s s s s r s aa s a s aaanarnannranns 74

ONIINE VidEOS. . i uuununnnnnnnssnssnsnnnnnnnnnns 75

Broker-specific information 7

]] 5 o o o e 76
Bug reports and support iNqQUIFIES.....ccicciiireiricire i s s s s s rs s nrnnnrnanns 76
72X V=1 g Tol <o = U1 o o 0 o 76
Broker-specifiC NOtES....ccuicriirinnrmsmranmsnnsssnsssassssansssssnnnssssnnnsssnnnnnnnnnns 77
Minimum supported broker Version.....c.ccccvrestiscsrrssmsassssassssssssssssssssnnssnnnsnnnnns 77
ONliNEG FrESOUNCES. . .uuiiiiririe it s s saesuasssa s aa s ssasaansaasaan s s aamsaanaamnaansnnnnnnnss 77
Message type detection........cicririmrimirieriersrss s s s s s s s s s s s s nnnnns 77
Prefetch count.......ccociiiiii i sn i s rr s s s s ra s s s s r s s n i nnmnnns 78
Destination types......cciiiiiiiiiiiie i sr s r s s r s ra s aaraaan s 78
Header properties..iccuicieiririasmiressn i s sra s ssassssssasssnssassasssasssnnsanssnsnnnsnnnsnnes 79
Auto-delete qUEUES....ciiiiiirirr s s s s s s s s s n s aaraanaa s 79
Creation of an auto-delete qQUEUE......ov it i e 79
Sending a message to the auto-delete qUEUE.......ceiiiiiii i 79
Queues With X-maX-priority...ccciciiciiiiieinissre s v s s s s s s ra s s nmnnas 80
Creation Of the QUEUE.....o.i i e e s reaneans 80
Sending a message to the QUeUE.. ..o i 80
Hint: check the brokKer 10g. ... e e e e aneeenns 80
QUOKUM (JUEU S . - uuuumssmsssssssssssmsssnssssssnnnnnsssnnnnnns 80
Send a value t0 @ QUOIUM QUEUE.ue ittt saee e s e aee e s e s e e anesanernernnneranes 81

I 05 2o T = T o e L=< 81
Special character encoding in STOMP headers.....ccciccviiimrnmnmmi s s s s 81
Durable subscriptions with RabbitMQ........ccciccciiiiicsinrnss s sssse s ssssnnsnnnss 82
[0 1T of o 01 o 82

L@ 1= o o] o 1R 82
D= = oo o PP 83

TESt L0l XM Pl i e s 83
Connection troubleshooting......ccvictiirimresinssssesssss s sssssssssannssnsnnnnnns 84
Performance demoO......ccciirimrmrmmersessassnsansassessassnssnsassassassnssnnssnsssnssnnsnnnsnnnsnnnnns 84
Socket error 10060 (Connection timed OUL)...cuviiiiiiiii i i i rrieee e eaas 84
Socket error 10061 (Connection refused)......covieiiiiiiiiii e 84
Socket error 10054 (Connection reset by peer).....ccvviiiiiiiiiii i 85

S (=L =] Ll 85
0 T = S 86

Broker-specific information

For broker-specific notes, please read chapter
Broker-specific notes on page 77 ff.

8 Habari Client for RabbitMQ 6.12

Installation

Requirements

Development Environment
Embarcadero Delphi 2009 Update 4 or higher
- or -

Free Pascal 3.2.0 or higher

TCP/IP Communication Library
Internet Direct (Indy) 10.6 (recommended)
-or-

Synapse Release 40 (deprecated)’

Test Suites
The DUnit test suite requires the Delphi 2009 version of DUnit for compilation.

The FPCUnit test suite.requires Lazarus 2.0.12 or newer to run.

Installation steps
The installer application will guide you through the installation process.

By default Habari Client for RabbitMQ will be installed in the folder

C:\Users\Public\Documents\Habarisoft\habari-rabbitmqg-6.12

1 Only release 40 of Ararat Synapse is used for Habari Client library development and tests

Communication Adapters 9

Communication Adapters

Introduction

Habari Client for RabbitMQ uses communication adapters as an abstraction layer for the
TCP/IP library. All connections create their own internal instance of the adapter class.

Configuration of communication adapters

No configuration is required for the communication adapters. Applications specify
communication and connection options in URL parameters or connection class properties
or connection factory settings.

Registration of communication adapter class

A communication adapter implementation can be prepared for usage by simply adding its
Delphi unit to the project.

Code example

program ClientUsingIndy;

uses
BTCommAdapterIndy, // use Internet Direct (Indy)
BTConnectionFactory, BTJMSInterfaces,
SysUtils;

Behind the scenes, the communication adapter class will register itself with the
communication adapter manager in the BTAdapterRegistry unit.

Default adapter class

Applications typically use only one of the available communication adapter classes for all
connections.

The library allows to register two or more adapter classes and switch at run-time, using
methods in the adapter registry in unit BTAdapterRegistry - this feature is mainly for tests
and demonstration purposes.

If more than one communication adapter is in the project, the first adapter class in the
list will be the default adapter class. Example:

10 Habari Client for RabbitMQ 6.12

Code example

program ClientUsingIndyOrSynapse;

uses
BTCommAdapterIndy, // use Internet Direct (Indy) as default adapter class
BTCommAdapterSynapse, // and register the Synapse adapter class
BTConnectionFactory, BTJMSInterfaces,
SysUtils;

The default adapter class can be changed at run-time by setting the adapter class either
by its name or by its class type.

Available communication adapters

The library includes two adapter classes for TCP/IP libraries, one for Indy (Internet Direct)
and one for Synapse.

Adapter Class Unit
TBTCommAdapterIndy BTCommAdapterIndy
TBTCommAdapterSynapse BTCommAdapterSynapse

Table 1: Communication Adapters

Limitations of the Synapse communication adapter class

« The Synapse library does not support the ConnectTimeout property in synchronous
socket operation mode, as connect timeouts are handled by the operating system.
Indy uses a background thread to abort the connect operation.?

+ Release 40 of Ararat Synapse is used for Habari Client library development and
tests. This is the last announced release, dated April 24, 2012. This release is
compatible for Delphi versions before XE4°>. If you use a newer release of Ararat
Synapse, please let me know if you encounter any API incompatibilities or other
problems.

2 http://www.ararat.cz/synapse/doku.php/public:howto:connecttimeout
3 http://docwiki.embarcadero.com/RADStudio/XE4/en/Global_Variables

The Programming Model 11

The Programming Model

Habari Client libraries use a programming model which is based on message producers
and message consumers, sessions, connections and connection factories.

The basic API is the same for all library versions to allow easy migration between
supported message brokers (with the exception of broker-specific features).

Connection
Factory

Connection
Cr%es
Message . Message
Session
Producer Consumer

Receives from

Destination

Sends to Creates
Msg
Destination

Illustration 1: Programming Model

New simplified API

See also: section Simplified API on page 43.

12 Habari Client for RabbitMQ 6.12

Tutorials

Quick Start Tutorial

This tutorial provides a very simple and quick introduction to Habari Client for RabbitMQ
by walking you through the creation of a simple "Hello World" application. Once you are
done with this tutorial, you will have a general knowledge of how to create and run Habari
applications.

This tutorial takes less than 10 minutes to complete.

Setting up the project
To create a new project:

1. Start the Delphi IDE.
In the IDE, choose File > New > VCL Forms Application — Delphi
Choose Project > Options ... to open the Project Options dialog
In the options tree on the left, select 'Delphi Compiler!

i A wWN

Add the source directory of Habari Client for RabbitMQ and the Indy source
directories to the 'Search path'

6. Choose Ok to close the Project Options dialog
7. Save the project as HelloMQ
Now the project is created and saved.

You should see the main form in the GUI designer now.

Adding code to the project

To use the Habari Client for RabbitMQ library, you need to add the required units to the
source code.

8. Switch to Code view (F12)

9. Add the required units to the interface uses list:

Code example

uses
BTConnectionFactory,
BTJMSInterfaces,

Tutorials 13

BTCommAdapterIndy,
// auto-generated unit references
Windows, Messages, SysUtils,

10.Compile and save the project.

11.Switch to Design view (F12), go to the Tool palette (Ctrl+Alt+P) and select TButton,
add a Button to the form.

12.Double click on the new button to jump to the Button Click handler
13.Add the following code to send the message:

Code example

procedure TForml.ButtonlClick (Sender: TObject);
var

Factory: IConnectionFactory;

Connection: IConnection;

Session: ISession;

Destination: IDestination;

Producer: IMessageProducer;

begin
Factory := TBTConnectionFactory.Create('stomp://localhost');
Connection := Factory.CreateConnection;

Connection.Start;

Session := Connection.CreateSession(False, amAutoAcknowledge) ;
Destination := Session.CreateQueue ('HelloMQ'):;
Producer := Session.CreateProducer (Destination);

Producer.Send (Session.CreateTextMessage ('Hello world!"'));

Connection.Close;
end;

14.Add a second button and double click on the new button to jump to the Button Click
handler

15.Add the following code to receive and display the message:

Code example

procedure TForml.Button2Click (Sender: TObject);
var

Factory: IConnectionFactory;

Connection: IConnection;

Session: ISession;

Destination: IDestination;

Consumer: IMessageConsumer;

Msg: ITextMessage;

begin
Factory := TBTConnectionFactory.Create('stomp://localhost');
Connection := Factory.CreateConnection;

Connection.Start;

Session := Connection.CreateSession(False, amAutoAcknowledge) ;

14 Habari Client for RabbitMQ 6.12

Destination := Session.CreateQueue ('HelloMQ') ;
Consumer := Session.CreateConsumer (Destination);
Msg := Consumer.Receive (1000) as ItextMessage;

if Assigned(Msg) then
ShowMessage (Msg.Text)
else
ShowMessage ('Error: no message received');

Connection.Close;
end;

16.Compile and save the project

Run the demo
« Launch the message broker
+ Start the application
» Click on Button 1 to send the message to the queue
« Click on Button 2 to receive the message and display it

You can run two instances of the application at the same time, and also on different
computers if the IP address of the message broker is used instead of localhost.

Check for memory leaks

To verify that the program does not cause memory leaks, insert a line in the project file
HelloMQ.dpr:

Code example
program HelloMQ;
uses

Forms,
Unitl in 'Unitl.pas' {Forml};

{SR *.res}

begin
ReportMemoryLeaksOnShutdown := True; // check for memory leaks
Application.Initialize;
Application.MainFormOnTaskbar := True;

Application.CreateForm(TForml, Forml);
Application.Run;
end.

Tutorial source code

The tutorial source code is included in the demo folder. It does not include a .proj file so
you still need to add the Habari and Indy source paths to the project options.

Connection Factory 15

Connection Factory

Overview

A connection factory is an object which holds all information required for the creation of a
connection objects.

A factory instance is created and configured only once. It then may be used to create
actual connection objects when needed. For example, a worker thread may create the
connection factory once at program start-up and use it to create a new connection object
whenever a connection failure occurred.

Creation and configuration

The code example below shows a helper function which creates a connection factory, and
returns it using the interface type IConnectionFactory.

The factory will be freed automatically when there are no more references to it.

Code example

function TExample.CreateConfiguredFactory: IConnectionFactory;
var
Factory: IConnectionFactory;
begin
/) m e
// create an instance
A e
Factory := TBTConnectionFactory.Create('user', 'password',6 'stomp://localhost?
send.receipt=true');

/) mmm e
// return the instance
/) mmm e
Result := Factory;

end;

This code example is useful for most simple client applications. However, because the local
factory variable is declared as IConnectionFactory, advanced configuration properties in
the class TBTConnectionFactory such as ClientID and SendTimeout are not accessible.

To access them, declare the local factory with the class type as shown in the next
example:

16 Habari Client for RabbitMQ 6.12

Code example

function TExample.CreateConfiguredFactory: IConnectionFactory;
var

Factory: TBTConnectionFactory;
begin

A e e L

// create and assign to local variable
Factory := TBTConnectionFactory.Create;

e

// additional configuration

/-

Factory.BrokerURL := 'broker.example.com';
Factory.UserName 'guest';

Factory.Password := 'guest';

Factory.ClientID := 'myclientId';
Factory.SendTimeOut := 10000;
Factory.ConnectTimeOut := 10000; // Indy only

A
// return the configured factory
/o
Result := Factory;

end;

Warning: if the method signature is changed to return the class TBTConnectionFactory
instead, a memory leak will occur.

Code example

function TExample.Run;
var
F: IConnectionFactory;
C: IConnection;
begin
/R
// get a factory and use it to create a connection object

/e

F := CreateConfiguredFactory;
C := F.CreateConnection;

/) mmm e e
// start and use the connection

/) mmm e e
C.Start;

A

// close the connection

/=
C.Close;
end;

Connection Factory 17

Connection URL parameters

Heart-beating Support

STOMP 1.1 introduced heart-beating, its configuration is covered in the chapter Stomp 1.2

Failover Support

The Failover transport layers reconnect logic on top of the Stomp transport.*

The Failover configuration syntax allows you to specify any number of composite URIs.
The Failover transport randomly chooses one of the composite URI and attempts to
establish a connection to it. If it does not succeed, a new connection is established to one

of the other URIs in the list.

Example for a failover URI:

failover: (stomp://primary:61613,stomp://secondary:61613)

Failover Transport Options

Option Name Default
Value
initialReconnectDelay 10
maxReconnectDelay 30000

backOffMultiplier 2.0

maxReconnectAttempts -1

randomize true

Table 2: Failover Transport Options

Description

How long to wait before the first reconnect attempt
(in ms)

The maximum amount of time we ever wait between
reconnect attempts (in ms)

The exponent used in the exponential backoff
attempts

-1 is default and means retry forever, 0 means don't
retry (only try connection once but no retry)

If set to > 0, then this is the maximum number of
reconnect attempts before an error is sent back to the
client

use a random algorithm to choose the the URI to use
for reconnect from the list provided

4 http://activemq.apache.org/failover-transport-reference.htmi

18 Habari Client for RabbitMQ 6.12

Example URI:

failover: (stomp://localhost:61616,stomp://remotehost:61616) ?
initialReconnectDelay=100&maxReconnectAttempts=10

Code example

Factory := TBTConnectionFactory.Create('failover: (stomp://primary:61616,stomp://
localhost:61613) ?maxReconnectAttempts=3&randomize=false') do
try

Conn := Factory.CreateConnection;

Conn.Start;

Conn.Stop;
finally

Conn.Close;
end;

Receipt Support
The STOMP standard supports receipt messages since version 1.0:

"Any client frame other than CONNECT may specify a receipt header with an
arbitrary value. This will cause the server to acknowledge receipt of the frame
with a RECEIPT frame which contains the value of this header as the value of
the receipt-id header in the RECEIPT packet."*%’

With Habari Client for RabbitMQ, client applications may configure receipt headers for the
frame types listed below.

After the STOMP frame has been sent to the broker, the client library waits for the
RECEIPT frame for a defined time, which may be configured per frame type. If the broker
does not send a receipt within the time-out interval, the client library will raise an

exception. If the client receives a receipt with the wrong receipt-id header, it will raise an
exception.

Receipt Support Parameters

STOMP frame Parameter Example URL

SUBSCRIBE subscribe.receipt stomp://localhost?subscribe.receipt=true

UNSUBSCRIBE subscribe.receipt stomp://localhost?
unsubscribe.receipt=true

SEND send.receipt stomp://localhost?send.receipt=true

DISCONNECT disconnect.receipt stomp://localhost?disconnect.receipt=tru

5 https://stomp.github.io/stomp-specification-1.0.html
6 https://stomp.github.io/stomp-specification-1.1.html#Header_receipt
7 https://stomp.github.io/stomp-specification-1.2.html#Header_receipt

Connection Factory

SUBSCRIBE Receipt

To erquest server reseipts for SUBSCRIBE frames, use the optional connection URL
parameter, subscribe.receipt.
Code example

Factory := TBTConnectionFactory.Create('user', 'password', 'stomp://localhost?
subscribe.receipt=true');

19

If the broker does not send a receipt within the time-out interval, the client library will
raise an exception.

UNSUBSCRIBE Receipt

To erquest server reseipts for UNSUBSCRIBE frames, use the optional connection URL
parameter, unsubscribe.receipt.
Code example

Factory := TBTConnectionFactory.Create('user', 'password', 'stomp://localhost?
unsubscribe.receipt=true');

If the broker does not send a receipt within the time-out interval, the client library will
raise an exception.

SEND Receipt

To erquest server reseipts for SEND frames, use the optional connection URL parameter,
send.receipt.

Code example

Factory := TBTConnectionFactory.Create('user', 'password',6 'stomp://localhost?
send.receipt=true');

If the broker does not send a receipt within the time-out interval, the client library will
raise an exception.

20 Habari Client for RabbitMQ 6.12

Note: for additional reliability, the client can use transactional send
(see section "Transacted Sessions").

DISCONNECT Receipt

To request server receipts for DISCONNECT frames, use the optional connection URL
parameter, disconnect.receipt.

Code example

Factory := TBTConnectionFactory.Create('user', 'password', 'stomp://localhost?
disconnect.receipt=true');

Without this parameter, the client will disconnect the socket connection immediately after
sending the DISCONNECT frame to the broker.

With disconnect.receipt=true, the client will send the DISCONNECT frame and then wait
for the broker receipt frame. If the broker does not answer, the client library will raise an
exception. The client application should treat its messages as undelivered.

Note: for additional reliability, the client can use transactional send
(see section "Transacted Sessions"), and message receipts (see
section "SEND Receipt").

Connections and Sessions

Connections and Sessions

21

Connections use Stomp 1.2 by default
Connections use Stomp 1.2 by default since

« Habari Client for Apache ActiveMQ 5.1

+ Habari Client for Apache Artemis 5.1

« Habari Client for RabbitMQ 5.1

With OpenMQ, the library still uses Stomp 1.0.The default protocol version is defined in
the BTBrokerConsts unit. The Stomp version may be specified by a connection URL
parameter.

Step-by-Step Example

Overview

This example will send a single message to a destination queue (ExampleQueue).

Add required units
Three units are required for this example
e a communication adapter unit (e. g. BTCommAdapterIndy)
e a connection factory unit (BTConnectionFactory)
e the unit containing the interface declarations (BTIMSInterfaces)

The SysUtils unit is necessary for the exception handling.

Code example

program SendOneMessage;
{$SAPPTYPE CONSOLE}

uses
BTCommAdapterIndy,
BTConnectionFactory,
BTJMSInterfaces,
SysUtils;

22 Habari Client for RabbitMQ 6.12

Creating a new Connection

New connections are created by calling the CreateConnection method of a connection
factory.

Code example

var
Factory: IConnectionFactory;
Connection: IConnection;

begin

Factory := TBTConnectionFactory.Create('user', 'password',6 'stomp://localhost');
Connection := Factory.CreateConnection;

« For connection factory creation and configuration options please see chapter
“Creation and configuration”.

« Since IConnection is an interface type, the connection instance will be destroyed
automatically if there are no more references to it in the program.

Connection URL Parameters

Connection URL parameters are documented in chapter "Connection URL parameters" and
in chapter "Stomp 1.2".

Creating a Session
To create the communication session,
e declare a variable of type ISession

e use the helper method createsession of the connection, and specify the
acknowledgment mode

Please check the API documentation for the different session types and acknowledgement
modes.

Since ISession is an interface type, the session instance will be destroyed automatically if
there are no more references to it in the program.

Code example

Session := Connection.CreateSession(False, amAutoAcknowledge) ;

Connections and Sessions 23

Using the Session

The Session variable is ready to use now. Destinations, producers and consumers will be
covered in the next chapters.

Code example

Destination := Session.CreateQueue ('ExampleQueue') ;
Producer := Session.CreateProducer (Destination);
Producer.Send (Session.CreateTextMessage ('This is a test message'));

Closing a Connection

Finally, the application closes the connection. The client will disconnect from the message
broker. Closing a connection also implicitly closes all open sessions.

Code example

finally
Connection.Close;
end;
end.

Note: Close will be called automatically if the connection is destroyed.
But because unclosed connections use resources, Close should
be called when the connection is no longer needed. When
logging is enabled, the connection class will also log a message
when a connection is destroyed without calling Close.

Session types overview

The table below shows the supported parameter combinations for the
Connection.CreateSession method and their effect on the session transaction and
acknowledgment features.

Parameters Client MUST Transaction
acknowledge support for STOMP
message
receipt® Send Ack Version
CreateSession(False, amAutoAcknowledge) No - - 1.0
CreateSession(False, amClientAcknowledge) Yes (cumulative - - 1.0
effect)

8 https://stomp.github.io/stomp-specification-1.2.htmI#SUBSCRIBE_ack_Header

24 Habari Client for RabbitMQ 6.12

CreateSession(False, amClientIndividual) Yes - - 1.2

CreateSession(True, amAutoAcknowledge) No v - 1.0

CreateSession(True, amClientAcknowledge) Yes (cumulative v v O 1.0
effect)

CreateSession(True, amClientIndividual) Yes 4 v O 1.2

CreateSession(True, amTransactional) No v - 1.0

Table 3: Session creation parameters

® - not supported by ActiveMQ Artemis

Transacted Sessions

A session may be specified as transacted. Each transacted session supports a single series
of transactions.

Each transaction groups a set of message sends into an atomic unit of work.

A transaction is completed using either its session's Commit method or its session's
Rollback method. The completion of a session's current transaction automatically begins
the next. The result is that a transacted session always has a current transaction within
which its work is done.

Create a transacted session

To create a transacted session, set the parameter of CreateSession to amTransactional as
shown in the code example

Code example

Session := Connection.CreateSession (amTransactional) ;

or (using the older API version)

Code example

Session := Connection.CreateSession (True, amTransactional);

This code will automatically start a new transaction for this session.

Connections and Sessions 25

Send messages

Now send messages using the transacted session.

Code example

Destination :=

Session.CreateQueue ('testqueue');
Producer :=

Session.CreateProducer (Destination) ;
Producer.Send (Session.CreateTextMessage ('This is a test message'));

Committing a transaction

If your client code has successfully sent its messages, the transaction must be committed
to make the messages visible on the destination.

Code example

// send messages ...

finally

// commit all messages
Session.Commit;
end;

Note: committing a transaction automatically starts a new transaction

Rolling back a transaction

If your client code runs wants to undo the sending of its messages, the transaction may
be rolled back, and the messages will not become visible on the destination.

Code example

// send messages
except

// error!
Session.Rollback;

end;

Note: rolling back a transaction automatically starts a new

transaction. A transacted session will be rolled back
automatically if the connection is closed.

26 Habari Client for RabbitMQ 6.12

Transacted message acknowledgement

Some library versions (see table “Communication Adapters" on page 10) support
transactions also for the acknowledgement of received messages.

When a transaction is rolled back or the connection is closed without a commit, messages
which have been acknowledged after the transaction start will return to unacknowledged
state.

Code example

// receive in a transacted session

Session := Connection.CreateSession (True, amClientAcknowledge) ;
Queue := Session.CreateQueue (GetQueueName) ;

Consumer := Session.CreateConsumer (Queue) ;

Msg := Consumer.Receive (1000);

// process the message

// acknowledge the message
Msg.Acknowledge;

// in case of errors, roll back all acknowledgements
Session.Rollback;

This is an experimental feature. It requires the STOMP 1.2 communication protocol.

Destinations 27

Destinations

Introduction

The API supports two models:®
1. point-to-point or queuing model
2. publish and subscribe model

In the point-to-point or queuing model, a producer posts messages to a particular queue
and a consumer reads messages from the queue. Here, the producer knows the
destination of the message and posts the message directly to the consumer's queue. It is
characterized by following:

e Only one consumer will get the message

e The producer does not have to be running at the time the receiver consumes the
message, nor does the receiver need to be running at the time the message is sent

e Every message successfully processed is acknowledged by the receiver

The publish/subscribe model supports publishing messages to a particular message topic.
Zero or more subscribers may register interest in receiving messages on a particular
message topic. In this model, neither the publisher nor the subscriber know about each
other. A good metaphor for it is anonymous bulletin board. The following are
characteristics of this model:

e Multiple consumers can get the message

e There is a timing dependency between publishers and subscribers. The publisher
has to create a subscription in order for clients to be able to subscribe. The
subscriber has to remain continuously active to receive messages, unless it has
established a durable subscription. In that case, messages published while the
subscriber is not connected will be redistributed whenever it reconnects.

Create a new Destination

Queues

A queue can be created using the CreateQueue method of the Session.

9 Java Message Service. (2007, November 21). In Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/wiki/Java_Message_Service

http://en.wikipedia.org/wiki/Java_Message_Service

28 Habari Client for RabbitMQ 6.12

Code example

Destination := Session.CreateQueue('foo');
Consumer := Session.CreateConsumer (Destination);

The queue can then be used to send or receive messages using implementations of the
IMessageProducer and IMessageConsumer interfaces. (See next chapter for an example)

Topics

A topic can be created using the CreateTopic method of the Session.

Code example

Destination := Session.CreateTopic('bar');
Consumer := Session.CreateConsumer (Destination);

The topic can then be used to send or receive messages using implementations of the
IMessageProducer and IMessageConsumer interfaces. (See next chapter for an example).

Producer and Consumer 29

Producer and Consumer

Message Producer

A client uses a MessageProducer object to send messages to a destination. A
MessageProducer object is created by passing a Destination object to a message-producer
creation method supplied by a session.

Code example

Destination := Session.CreateQueue ('foo');
Producer := Session.CreateProducer (Destination);
Producer.Send (Session.CreateTextMessage ('Test message'));

A client can specify a default delivery mode, priority, and time to live for messages sent by
a message producer. It can also specify the delivery mode, priority, and time to live for an
individual message.

Persistent messages

The delivery mode for outgoing messages may be set to persistent in one of two ways.
From the docs for TBTMessageProducer: "A client can specify a default delivery mode,
priority, and time to live for messages sent by a message producer. It can also specify the
delivery mode, priority, and time to live for an individual message."

Setting the default delivery mode
Code example

Destination := Session.CreateQueue('foo');

Producer := Session.CreateProducer (Destination);
Producer.DeliveryMode := dmPersistent;

Producer.Send (Session.CreateTextMessage ('Test message'));

Setting the delivery mode for an individual message
Code example

Destination := Session.CreateQueue ('foo');

Producer := Session.CreateProducer (Destination);
Producer.Send(Session.CreateTextMessage ('Test message'), dmPersistent,
BTBrokerConsts.DEFAULT PRIORITY, 0);

30 Habari Client for RabbitMQ 6.12

Message Consumer

A client uses a MessageConsumer object to receive messages from a destination. A
MessageConsumer object is created by passing a Destination object to a message-
consumer creation method supplied by a session.

Code example

Destination := Session.CreateQueue ('foo');
Consumer := Session.CreateConsumer (Destination);

Message Selector
A message consumer can be created with a message selector®.

A message selector allows the client to restrict the messages delivered to the message
consumer to those that match the selector.

Synchronous Receive

A MessageConsumer offers a Receive method which can be used to consume exactly one
message at a time.

Code example

while I < EXPECTED do

begin
TextMessage := Consumer.Receive (1000) as ITextMessage;
if Assigned(TextMessage) then
begin
Inc(I);
TextMessage.Acknowledge;
L.Info(Format ('%d %s', [I, TextMessage.Text])):;
end;
end;

Receive and ReceiveNoWait
There are three different methods for synchronous receive:

Receive The Receive method with no arguments will block (wait until a
message is available).

Receive(TimeOut) The Receive method with a timeout parameter will wait for the
given time in milliseconds. If no message arrived, it will return
nil.

10 The RabbitMQ message broker does not support message selectors

Producer and Consumer 31

ReceiveNoWait The ReceiveNoWait method will return immediately. If no
message arrived, it will return nil.

32 Habari Client for RabbitMQ 6.12

Durable Subscriptions

Description

If a client needs to receive all the messages published on a topic, including the ones
published while the subscriber is inactive, it uses a durable TopicSubscriber.

The message broker retains a record of this durable subscription and insures that all
messages from the topic's publishers are retained until they are acknowledged by this
durable subscriber or they have expired.*

The combination of the clientld and durable subscriber name uniquely identifies the
durable topic subscription.

After you restart your program and re-subscribe, the broker will know which messages
you need that were published while you were away.

Creation

The Session interface contains the CreateDurableSubscriber method which creates a
durable subscriber to the specified topic.

A durable subscriber MessageConsumer is created with a unique clientID and durable
subscriber name.

Only one thread can be actively consuming from a given logical topic subscriber.

11 http://download.oracle.com/javaee/5/api/javax/jms/TopicSession.html

Temporary Queues 33

Temporary Queues

Introduction

“Temporary destinations (temporary queues or temporary topics) are
proposed as a lightweight alternative in a scalable system
architecture that could be used as unique destinations for replies.
Such destinations have a scope limited to the connection that created
it, and are removed on the server side as soon as the connection is

closed.” ("Designing Messaging Applications with Temporary Queues”, by Thakur
Thribhuvan *?)

Library Support

Temporary destinations are supported by
ActiveMQ
OpenMQ
RabbitMQ

Resource Management

The session should be closed as soon as processing is completed so that
TemporaryQueues will be deleted on the server side.

12 http://onjava.com/pub/a/onjava/2007/04/10/designing-messaging-applications-with-
temporary-queues.html

34 Habari Client for RabbitMQ 6.12

Message Options

Standard Properties

The Apache ActiveMQ message broker supports some JMS standard properties in the
STOMP adapter. These properties are based on the JMS specification of the Message
interface.™

Habari Client libraries for other message brokers may support a subset of these standard
properties.

Note: If your application makes use of these properties, your
application depends on a broker-specific feature which is not
guaranteed to be available in the STOMP adapter of other
message brokers

Properties for outgoing messages

JMSCorrelationID The correlation ID for the message.

JMSExpiration The message's expiration value.

JMSDeliveryMode Whether or not the message is persistent.'*
JMSPriority*? The message priority level.

JMSReplyTo The Destination object to which a reply to this message

should be sent.

Properties for incoming messages

JMSCorrelationID The correlation ID for the message.
JMSExpiration The message's expiration value.
JMSDeliveryMode Whether or not the message is persistent.
JMSPriority The message priority level.

13 http://download.oracle.com/javaee/5/api/javax/jms/Message.html

14 For sending persistent messages please see documentation for IMessageProducer

15 Clients set the JMSPriority not directly, but either on the producer or as a parameter in the
Send method

JMSTimestamp

JMSMessageld

JMSReplyTo

Message Options 35

The timestamp the broker added to the message.
The message ID which is set by the provider.

The Destination object to which a reply to this message
should be sent.

Reserved property names

Some headers names are defined by the Stomp specifications, and by broker-specific
extensions of the Stomp protocol. These reserved Stomp header names can not be used
as names for user defined properties.

Note

Examples

login
passcode
transaction
session
message
destination
id

ack

selector

type
content-length
content-type
correlation-id
expires
persistent
priority
reply-to
message-id
timestamp
client-id
redelivered

The client library will raise an Exception if the application tries
to send a message with a reserved property name.

36 Habari Client for RabbitMQ 6.12

Prefix for custom headers

A common practice to avoid name collisions is using a prefix for your own properties
(example: x-type instead of type).

Selectors

Selectors are a way of attaching a filter to a subscription to perform content based
routing. For more documentation on the detail of selectors see the reference on
javax.jmx.Message'®.

Supported message brokers
Message selectors are supported by

+ Habari Client for ActiveMQ

« Habari Client for Artemis

« Habari Client for OpenMQ

Code example

Consumer := Session.CreateConsumer (Destination, 'type=''car'' and color=''blue''');

All supported brokers allow supports string type properties and operations in selectors.
ActiveMQ also allows integer properties and operations in selectors (see special note'’).

16 http://docs.oracle.com/javaee/5/api/javax/jms/Message.html
17 http://activemq.apache.org/selectors.html

Map Messages 37

Map Messages

Introduction

A map message is used to exchange a set of name-value pairs. The names are strings,
the values are also strings (but may be textual representations of other data types).

Usage Example

Create a map message and add map entries:

MapMessage := Session.CreateMapMessage;
MapMessage.SetString('key', 'wvalue');
MapMessage.SetInt ('key int', 4096);
MapMessage.SetBoolean('key b', True);

Read a map message from a consumer and access its entries:

MapMessage := Consumer.Receive (1000) as IMapMessage;
StringValue := MapMessage.GetString('key'));
IntegerVale := MapMessage.GetInt('key int'));
BoolValue := MapMessage.GetBoolean('key b'));

Enumerate map entries:

MapKeys := MapMessage.GetMapNames;
for I := 0 to Length(MapKeys) - 1 do
begin
MapKey := MapKeys[I];
MapValue := MapMessage.GetString (MapKey) ;

// process map entry
end;

Map Message Transformer

To send and receive map messagers, the application needs to convert incoming and
outgoing map messages from and to the STOMP message body.

The IMessageTransformer interface must be implemented for map message and and
object message transformation. This interface defines two methods,
ConsumerTransform and ProducerTransform.

38 Habari Client for RabbitMQ 6.12

Interface

function ConsumerTransform(const Session: ISession;
const Consumer: IMessageConsumer; const AMessage: IMessage): IMessage;

function ProducerTransform(const Session: ISession;
const Producer: IMessageProducer; const AMessage: IMessage): IMessage;

Implementation guide for map messages:
1. create a class which implements the IMessageTransformer interface

o for ConsumerTransform, the incoming map message is passed as the
AMessage parameter, the method must read its body to reconstruct the map
properties, and return the map message as function result

o for ProducerTransform, the outgoing map message is passed as the AMessage
parameter, the method must write its body to store a representation of the
map, and return the map message as function result

2. create an instance of this class and register it as the message transformer on the
IConnection instance

o Note: only one map message transformer may be active for one connection

Code example

Connection := Factory.CreateConnection;
try
MyMapTransformer := TMyMapMessageTransformer.Create;

// use the helper method in unit BTConnection:
SetMapMessageTransformer (Connection, MyMapTransformer, 'my-map-message');

Connection.Start;
// send / receive messages
finally

Connection.Close;
end;

Transformation Identifier

To detect that an incoming message is a map message, it needs to carry a special header
property. Without this transformation identifier, the message will still be delivered but its
actual type will be undefined - it may arrive as a ITextMessage or IbytesMessage.

By default, the library will set this header property to the transformation identifier passed
to the SetTransfomer method.

You may explicitly set the header property on the created message:

Map Messages 39

Code example

MapMessage := Session.CreateMapMessage;
// add map entries

// add the transformation identifiert
MapMessage.SetStringProperty (SH TRANSFORMATION, 'my-map-message');

Producer.Send (MapMessage) ;

m ProducerTransform implementation with TStrings

This implementation uses a TStrings to collect the map entries. The outgoing message
contains the TStrings as body.

Notes:

« the method uses a method of a helper interface, IContentProvider.SetContent, to
write the body content

+ the method returns nil if the passes message is no map message

Code example

function TMyMapMessageTransformer.ProducerTransform(const Session: ISession;
const Producer: IMessageProducer; const AMessage: IMessage): IMessage;
var
TmpMapMsg: IMapMessage;
Keys: PMStrings;
I: Integer;
MapKey: string;
MapValue: string;
MapStrings: TStrings;
begin
Result := nil;

if Supports (AMessage, IMapMessage, TmpMapMsg) then

begin
MapStrings := TStringList.Create;
try
Keys := TmpMapMsg.GetMapNames;
for I := 0 to Length(Keys) - 1 do
begin
MapKey := Keys[I];
MapValue := TmpMapMsg.GetString (MapKey) ;
MapStrings.Values [MapKey] := MapValue;
end;

(AMessage as IContentProvider) .SetContent (Utf8Encode (MapStrings.Text));

Result := AMessage;
finally

MapStrings.Free;
end;

end;
end;

40 Habari Client for RabbitMQ 6.12

See unit MapMessageTransformerTests for integration / unit tests.

Object Messages 41

Object Messages

“Object serialization is the process of saving an object's state to a sequence of
bytes, as well as the process of rebuilding those bytes into a live object at some
future time.”*8

Introduction

In messaging applications, object serialization is required to transfer objects between
clients, but also to store objects on the broker if they are declared persistent.

Object Message Transformer

To send and receive object messagers, the application needs to convert incoming and
outgoing object messages from and to the STOMP message body.

The IMessageTransformer interface must be implemented for map message and and
object message transformation.

This interface defines two methods, ConsumerTransform and ProducerTransform.

Code example

function ConsumerTransform(const Session: ISession;
const Consumer: IMessageConsumer; const AMessage: IMessage): IMessage;

function ProducerTransform(const Session: ISession;
const Producer: IMessageProducer; const AMessage: IMessage): IMessage;

Implementation guide for map messages:
3. create a class which implements the IMessageTransformer interface

o for ConsumerTransform, the incoming object message is passed as the
AMessage parameter, the method must read its body to reconstruct the object,
and return the object message as function result

o for ProducerTransform, the outgoing object message is passed as the
AMessage parameter, the method must write its body to store a representation
of the object, and return the object message as function result

18 https://www.oracle.com/technical-resources/articles/java/serializationapi.html

42 Habari Client for RabbitMQ 6.12

4. create an instance of this class and register it as the message transformer on the
IConnection instance

o Note: only one object message transformer may be active for one connection

See unit ObjectMessageTransformerTests for integration / unit tests.

Simplified API 43

Simplified API

New interface types

The new API* is based on three new interfaces which reduce the amount of client code:

- IMQContext
« IMQProducer
+ IMQConsumer

IMQContext interface

A IMQContext object encapsulates both the IConnection and the ISession object of the
classic API. The connection factory interface contains new methods to create IMQContext
objects:

Code example

function CreateContext: IMQContext; overload;

function CreateContext (const AcknowledgeMode:
TAcknowledgementMode) : IMQContext; overload;

function CreateContext (const Username, Password: string):
IMQContext; overload;

function CreateContext (const Username, Password: string;
const AcknowledgeMode: TAcknowledgementMode) :
IMQContext; overload;

The IMQContext provides methods to create messages, producer and consumer objects,
destinations (queues, topics, temporary queues, temporary topics, durable subscribers
and so forth), and for transaction control (commit, rollback).

IMQProducer interface

A IMQProducer object provides methods to produce and send messages to the broker. As
a shortcut, a method allows to send text or bytes messages without creating ITextMessage
or IBytesMessage object by providing the text or bytes as a parameter.

Code example

function Send(const Destination: IDestination;

19 Since version 6.0

44 Habari Client for RabbitMQ 6.12

const Body: string): IMQProducer; overload;
function Send (const Destination: IDestination;
const AMessage: IMessage): IMQProducer; overload;

IMQConsumer interface

An IMQConsumer object provides methods to consume messages from the broker.

The following example is taken from the unit tests. It uses the new API to create and send
a text message to a broker queue destination, and then receives the message from this
queue.

Source code example

Code example

procedure TNewApiTests.TestSendMessage;
var

Context: IMQContext;

Destination: IQueue;

Producer: IMQProducer;

Consumer: IMQConsumer;

TextMessage: ITextMessage;

begin
Context := Factory.CreateContext;
Destination := Context.CreateQueue (GetQueueName) ;
Producer := Context.CreateProducer;

Producer.Send (Destination, 'Hello World');

Consumer := Context.CreateConsumer (Destination);
TextMessage := Consumer.Receive (2500) as ITextMessage;

CheckEquals ('Hello World', TextMessage.Text);
Context.Close;
end;

Stomp 1.2 45

Stomp 1.2

Connection configuration

A connection string can use additional URL parameters to configure Stomp version 1.1 and
1.2

All Parameters are case sensitive.

Parameters can be omitted to use the default value.

Switch Description Default
connect.accept- Supported Stomp versions in ascending order Broker
version?° specific, see

below

connect.host The name of a virtual host that the client Server URI

wishes to connect to. It is recommended

clients set this to the host name that the socket

was established against, or to any name of their

choosing. If this header does not match a known

virtual host, servers supporting virtual hosting

MAY select a default virtual host or reject the

connection.
connect.heart-beat*® Heart beat (outgoing, incoming) 0,0

Default Stomp version (broker-specific)?*?

If the connection URL does not contain the connect.accept-version parameter, the client

library will add an accept-version header to the CONNECT frame with the value defined in
the SH_DEFAULT_STOMP_VERSION constant in the BTBrokerConsts unit.

Default Stomp version

ActiveMQ Artemis OpenMQ RabbitMQ

1.2 1.2 1.0 1.2

21 http://stomp.github.com//stomp-specification-1.2.htmI#CONNECT or STOMP_Frame
22 http://stomp.github.com//stomp-specification-1.2.html#Heart-beatin
23 Since version 5.1 (2017.06)

http://stomp.github.com//stomp-specification-1.2.html#Heart-beating
http://stomp.github.com//stomp-specification-1.2.html#CONNECT_or_STOMP_Frame
http://stomp.github.com//stomp-specification-1.2.html#protocol_negotiation

46 Habari Client for RabbitMQ 6.12

Connection Factory Code Example:

Code example

Factory := TBTConnectionFactory.Create (
'stomp://localhost:61613?connect.accept-version=1.2&connect.heart-beat=1000,0");

This example creates a connection factory with these connection settings

host: localhost
port: 61613
accept-version: 1.2
heart-beat: 1000,0

« virtual host is localhost
+ the client requests Stomp 1.2 protocol

+ client heart beat interval is 1000 milliseconds, no server heart beat signals

Specification
For details see the Stomp specification pages:
http://stomp.github.com//stomp-specification-1.1.html

http://stomp.github.com//stomp-specification-1.2.html

Sending heart-beat signals

A client can use the SendHeartbeat method of the connection object to send a heart-
beat byte (newline 0x0A).

SendHeartbeat is a method of the IHeartbeat interface, which is declared in the
BTSessionIntf unit. A cast of the IConnection object is required to access this method.

Code example

(Connection as IHeartbeat) .SendHeartbeat;

http://stomp.github.com//stomp-specification-1.2.html
http://stomp.github.com//stomp-specification-1.1.html

Stomp 1.2 47

Notes:

- the client application code is responsible for sending a heartbeat message within
the maximum interval which was specified in the connect parameter - the Habari
Client library does not send heart-beats automatically

- client messages which are sent after the heart-beat interval expires may be lost

Checking for incoming heartbeats

The Habari client library stores a time-stamp of the last incoming data. If the time which
elapsed since this time-stamp is greater than two times the heart-bet interval, calling
CheckHeartbeat will raise an exception of type EBTStompServerHeartbeatMissing.

Code example

(Connection as IHeartbeat) .CheckHeartbeat;

Notes:

+ the method raises an exception if the connection does not use server-side heart-
beating

- the method only checks the time elapsed since the last heart-beat, it does not try
to read any data from the connection

Reading server-side heartbeats

If the client never needs to consume any messages, but still needs to check for server-
side heartbeats, it can use the ReceiveHeartbeat method of the connection object.

This method takes one argument, TimeOut.

The function returns True if it found at least one heart-beat signal on the connection.

Calling ReceiveHeartbeat is only useful for applications which never call Receive, to check
if the server is still healthy, and to consume the pending heart-beat signals from the
connection.

If the client reads messages (using Consumer.Receive), calling ReceiveHeartbeat is not
required.

48 Habari Client for RabbitMQ 6.12

Example Applications

Directory

Description

common
common-consumertool
common-consumertool-fpc
common-producertool
common-producertool-fpc
common-producertool-ssl
common-tests
common-tests-fpc
delphichat

heartbeat-server

loadbalancing

performance

reconnect

rpc

textmessage
throughput
throughput-fpc

transactions

Shared units

Receive messages from broker

Free Pascal version

Send messages to broker

Free Pascal version

Send messages to broker with SSL connection
DUnit tests(Delphi 2009)

FPCUnit tests

Simple chat client (Delphi 2009)

Uses server-side heart-beating to check the connection /
server health*

File transfer from LoadServer to LoadClient application

Multi-threaded performance test application (Delphi
2009)

Send messages and reconnect on connection failure
Use temporary queues to implement request/response
style communication (not supported on all message
brokers??®)

Simple text message example

Produces and consumes messages continuously

Free Pascal version

Transaction example

24 Requires STOMP 1.2; not supported by OpenMQ
25Not available with ActiveMQ Artemis message broker

Example Applications

Directory Description

tutoriall Tutorial one

tutorial2 Tutorial two

Table 4: Example Applications (in alphabetic order)

Shared units for demo projects
The directory demo/common contains shared units:

« connection configuration form

« command line parameter support class

+ LoggingHelper example unit (see “Logging with SLF4P” on page 59)

o O 0
Connection configuration @

Illustration 2: Connection
configuration dialog example

50 Habari Client for RabbitMQ 6.12

ConsumerTool

The ConsumerTool demo may be used to receive messages from a queue or topic. This
example application is configurable by command line parameters, all are optional.

Parameter
AckMode

Clientld

ConsumerName

Durable
MaximumMessages
Password
PauseBeforeShutDown

ReceiveTimeOut

SleepTime
Subject
Topic
Transacted
URL

User

Verbose

Default Value

Description

CLIENT_ACKNOWLEDGE Acknowledgment mode, possible values are:

Habari

false
10

false

0
TOOL.DEFAULT
false

false

localhost

true

CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE
or SESSION_TRANSACTED

Client Id for durable subscriber

name of the message consumer - for durable
subscriber

true: use a durable subscriber
expected number of messages
Password

true: wait for key press

consume messages while they continue to be
delivered within the given time out

time to sleep after receive
queue or topic name

true: topic false: queue
true: transacted session
server url

user name

verbose output

Table 5: ConsumerTool Command Line Options

BN Eingabeaufforderung

Habari Client for Ac

Connecting to URL: s

C uming queue: TOOL.DE
a non-durable su

e e A e a el
M MIMIMTMTIMIMTIMIMD

R
R
R
R
R
R
R
R
C

tion

C:\Users\Michael>_

2088-2821 Michael Justin

then we will shutdown

B QN Y S S R S R S Y

Illustration 3: ConsumerTool demo application

Example Applications 51

Examples

Receive 1000 messages from local broker

ConsumerTool —--MaximumMessages=1000

Receive 10 messages from local broker and wait for any key

ConsumerTool —--PauseBeforeShutDown

Use a transacted session to receive 10,000 messages from local broker

ConsumerTool --MaximumMessages=10000 --Transacted --AckMode=SESSION_ TRANSACTED

52 Habari Client for RabbitMQ 6.12

ProducerTool

The ProducerTool demo can be used to send messages to the broker. It is configurable by
command line parameters, all are optional.

‘ Parameter ‘ Default ‘ Description

MessageCount 10 Number of messages
MessageSize 255 Length of a message in bytes
Persistent false Delivery mode 'persistent’
SleepTime 0 Pause between messages in milliseconds
Subject TOOL.DEFAULT Destination name
TimeTolLive 0 Message expiration time
Topic false Destination is a topic
Transacted false Use a transaction

URL localhost Message broker URL
Verbose true Verbose output

User User name

Password Password

Table 6: ProducerTool Command Line Options

BN Eingabeaufforderung - O X

g n-persistent messag
Sleeping between publis

Illustration 4: ProducerTool demo application

Examples

Send 10,000 messages to the queue TOOL.DEFAULT on the local broker

ProducerTool —--MessageCount 10000

Example Applications 53

Send 10 messages to the topic ExampleTopic on the local broker

ProducerTool —--Topic —--Subject=ExampleTopic

54 Habari Client for RabbitMQ 6.12

Performance test

The performance test application provides a GUI for multi-threaded sending and receiving
of messages.

+ A broker configuration dialog can be invoked by clicking the URL field
+ The communication library (Indy or Synapse) can be selected

« Number and length of messages and thread number can be adjusted using the
sliders

For every thread a message queue with the name ExampleQueue.<n> will be used.

&% Habari Client for ActiveMQ) 6.12-SNAPSHOT performance test application - O bt

Broker address (click to configure)

|5tc-mp:_r’_r'|nca|hosﬂ

Mumber of messages to send:

!)

Payload length:

! J

Mumber of threads:

! /

Create 2 sender and receiver threads for 2000 messages
each (payload 2000 bytes)

Send 2000 messages to queue ExampleQueue,1 ~
Receive 2000 messages from queue ExampleCueue0

Receive 2000 messages from queue ExampleQueue.

2000 messages sent to queue ExampleQueue.]

2000 messages sent to queue ExampleCueue0

2000 messages received from queue ExampleQueue.]

2000 messages received from queue ExampleQueue.0

6/11 msgs/s

ActiveMQ/5.16.3

Illustration 5: Performance Test
Application

Habari Client for RabbitMQ 5.1 includes an enhanced performance test application, which
optionally collects message rates of multiple test runs and displays the sample median.
Shown above is an example for a client configuration:

Example Applications 55

« 21 test runs (triggered by a shift-click on the test button)

« 2000 messages per thread

« 210 bytes payload

« two producer threads, two consumer threads
To start the long-running tests, shift-click on the run button. Taking all test samples takes
around ten seconds.

56 Habari Client for RabbitMQ 6.12

Throughput test

This example application is configurable by command line parameters, all are optional.

‘ Parameter ‘ Default Value Description
Password (broker-specific) Password
Subject ExampleTopic Topic hame
URL (broker-specific) Connection URL
User (broker-specific) User name

Table 7: Throughput Test Tool Command Line Options

Examples

Use remote broker 'mybroker' and specify user and password

tptest --url=stomp://mybroker --user=testl --password=secret

B Eingabeaufforderung - "C\Users\Michael\Documents\Habari Client libraries\Habari ActiveMQitargetidemothroughput'.., — O >

B21 Michael Justin

T T AT

=

=

=
WL

B
B
5
ey
5
j-u
13,
1
5
18,

=

Illustration 6: Throughput test tool output

Unit Tests 57

Unit Tests

Introduction

Habari Client libraries include DUnit and FPCUnit tests. They require the classic DUnit
framework (included in Delphi 2009) or FPCUnit (included in Lazarus 2.0.12).

The test projects are installed in the common-tests and common-tests-fpc folders.

Test project configuration

Logging
To switch on SLF4P logging, add the conditional symbol HABARI_LOGGING (see chapter

‘Logging with SLF4P’) and rebuild the project. Set the DEFAULT_LOG_LEVEL constant in
unit TestHelper to a valid SLF4P level.

Optional units

To switch on tests for optional units (object message exchange), add the conditional
symbol TEST_OPTIONAL_UNITS and rebuild the project.

Test units

The common-tests folder contains these units

Test setup and test case base classes

TestHelper Main test set-up and utility unit, contains no tests
HabariTestCase Test case base classes used for most tests

Unit tests

ApiTests Tests Habari Client core API methods - part 1

BasicTests Tests Habari Client core API methods - part 2

58 Habari Client for RabbitMQ 6.12

BrokerExtensionsTests Tests broker-specific features and extensions of the STOMP
protocol

HabariExtensionsTests Tests non-standard features provided by the Habari Client library
HabariTypesTests Tests internal data types

ObjectExchangeTests?® Tests object message exchange (for Delphi DUnit only)
Stomp12Tests Tests features introduced with version 1.2 of the STOMP standard

StubServerTests Tests using a simple local Stomp server

Free Pascal specific test units are in the folder common-tests-fpc

Test execution

Requirements

The test projects require a message broker running on the local system, which accepts
STOMP connections on the default port, with the default user credentials. User name and
password for the default user are defined in unit BTBrokerConsts.

Test destinations

Most tests create a test-specific destination (queue or a topic) to reduce the risk of side
effects.

The name of the destination is the combination of the test class name and the unit test
name.

Note: the unit tests will not clean up or remove these destination objects after usage.

STOMP 1.2

Since Habari Client for RabbitMQ 5.0, the unit test use STOMP 1.2 for connections.

260nly added to the test suite if TEST_OPTIONAL_UNITS is defined

Logging with SLF4P

Logging with SLF4P

59

Introduction

Habari Client libraries include the free open source logging framework SL4FP as an
optional dependency.

SLF4P is available at https://github.com/michaellustin/slf4p

IDE and project configuration
In order to compile with SLF4P support,

1. include the path to the slIf4p library in the project search or in the global library
path

2. add the conditional symbol HABARI_LOGGING to the project options

Delphi
+ choose Project | Options... | Delphi Compiler > Conditional defines
« add HABARI_LOGGING

Lazarus
« choose Project | Project Options ... | Compiler Options > Other
+ add -dHABARI_LOGGING in the Custom options field

LoggingHelper unit

A simple LoggingHelper unit is located in the demo\common\ directory and can be copied to

a project to add slf4p support with little extra coding.

Code example

uses
LoggingHelper,

begin

https://github.com/michaelJustin/slf4p

60 Habari Client for RabbitMQ 6.12

// set up logging
LoggingHelper.ConfigureLogging;

The LoggingHelper unit may be adjusted to your configuration needs. Here is an example
which uses the SimpleLogger implementation (included in SLF4P).

Code example

unit LoggingHelper;
interface

uses
{SIFDEF HABARI LOGGING}
djLogOverSimplelLogger, SimplelLogger
{SENDIF HABARI LOGGING};

const
DEFAULT LOG LEVEL = 'info';

procedure ConfigureLogging (const LogLevel: string = DEFAULT LOG LEVEL);
implementation

procedure Configurelogging(const LoglLevel: string);
begin
{SIFDEF HABARI LOGGING}
Simplelogger.Configure ('defaultLoglLevel', LoglLevel);
SimpleLogger.Configure ('showDateTime', 'true');
{SENDIF HABARI LOGGING}
end;

end.

Conditional Symbols 61

Conditional Symbols

Caution

All conditional symbols enable experimental or optional features, which are not
covered by the free basic support plan. Feedback (suggestions for improvements,
feature requests, and bug reports) are always welcome.

Conditional symbols for release builds

HABARI_ALLOW_UNKNOWN_URL_PARAMS

Disables strict connection URL parameter checking.

If this symbol is defined, connection URLs may contain arbitrary parameters. By default,
the library only accepts well-known connection parameters and raises an exception for
unknown parameters.

Broker versions: all broker versions.

HABARI_LOGGING
Enables logging support. Requires the open source SLF4P logging facade.

Broker versions: all broker versions.

See also: Logging with SLF4P

HABARI_SSL_SUPPORT

Enables SSL support. Support for SSL connections is an advanced / optional feature,
technical support is not included in the basic support plan.

The directory source/optional contains example implementations of Indy and Synapse
adapter classes with OpenSSL support. Please note that these are basic implementations
and not supported in the free basic support plan.

Broker versions: all broker versions.
See also: SSL/TLS Support

62 Habari Client for RabbitMQ 6.12

HABARI_USE_INTERCEPT

Enables detailed logging of Stomp message frames
This uses the Indy interceptor implementation in unit IdInterceptSimLog.

All communication data will be logged to a file. A new file will be created for every new
STOMP connection. The file is located in a folder below the current working directory.

If this symbol is defined in a release build, a compiler warning will be emitted:

HABARI USE_INTERCEPT should not be used for release builds

Broker versions: all broker versions.
Indy communication adapter only
Note: this feature requires permissions
« create a directory in the current directory if it does not exist

- create files

HABARI_USE_INTERCEPT_STDOUT

Enables detailed logging of Stomp message frames to the console (Windows
only)

This uses the interceptor implementation in unit BTInterceptSimLog.

All communication data will be logged to stadoit (console).

If this symbol is defined in a release build, a compiler warning will be emitted:

HABARI USE_INTERCEPT_ STDOUT should not be used for release builds

Broker versions: all broker versions.
Indy communication adapter only
Note: this feature is only supported on the Windows platform.

Example output:

Send:Bytes:71
CONNECT

login:user
passcode:password
accept-version:1.2
client-id:in

Recv:Bytes:74
CONNECTED
server:ActiveMQ/5.16.3
heart-beat:0,0
session:in

version:1.2

Send:Bytes:115

Conditional Symbols

SUBSCRIBE
destination:/queue/TBasicTests.TestReceiveTimeout.Q

ack:auto
1d:{45185848-A92D-473D-8553-F7D10B12547A}

63

Conditional symbols for unit test projects

HABARI_TEST_OPTIONAL_UNITS

Enables tests for experimental / optional units.

HABARI_TEST_SYNAPSE

Enables Synapse communication adapter in DUnit/FPCUnit tests, default is Indy.

Supported for: all versions.

64 Habari Client for RabbitMQ 6.12

SSL/TLS Support

SSL communication adapter classes

Habari Client for RabbitMQ includes two experimental adapter classes for usage with
OpenSSL, one for Indy (Internet Direct) and one for Synapse. The units for these classes
are in the source\optional folder.

Adapter Class Unit
TBTCommAdapterIndySSL BTCommAdapterIndySSL
TBTCommAdapterSynapseSSL BTCommAdapterSynapseSSL

Table 8: Communication Adapters with SSL Support

Mixed Use
It is possible to use SSL and non-SSLL connections in the same project:
« connections with the “stomp://” scheme will remain unencrypted

« connections with the “stomp+ssl://” scheme will use SSL

SSL configuration

The TBTCommAdapterIndySSL class includes very basic configuration of the Indy SSL
handler. Your server or your specific security requirements may require additional
configuration.

Indy SSL Demo

A demo application is included in common-producertool-ssl.

Code example
program ProducerToolIndySSL;

{$SAPPTYPE CONSOLE}

uses

SSL/TLS Support

// the Habari Client adapter class for Indy + SSL
BTCommAdapterIndySSL,
// required to set the default adapter

BTAdapterRegistry,
// the common demo unit for the producer tool
ProducerToolUnit in '..\common-producertool\ProducerToolUnit.pas',
// configuration support unit
CommandLineSupport in '..\common\CommandLineSupport.pas',
SysUtils;

begin

BTAdapterRegistry.SetDefaultAdapter (TBTCommAdapterIndySSL) ;

with TProducerTool.Create do
try
try
Run;
except
on E:Exception do WritelLn (E.Message);
end
finally
Free;
end;
ReadLn;
end.

65

Notes

+ the TBTCommAdapterIndySSL class must be registered using
(BTAdapterRegistry.SetDefaultAdapter(TBTCommAdapterIndySSL)

+ the project must be compiled with HABARI_SSL_SUPPORT
« the connection URL must be in the form “stomp+ssl://server.com:sslport”

+ the OpenSSL libraries must be in the application search path

Example output

Habari Client for RabbitMQ 5.1.0 (c) 2008-2017 Michael Justin

Connecting to URL: stomp+ssl://localhost:61614

Publishing a Message with size 255 to queue: ExampleQueue

Using persistent messages

Sleeping between publish 0 ms

313 INFO habari.TBTCommAdapterIndySSL - Verifying SSL certificate

313 INFO habari.TBTCommAdapterIndySSL - Issuer: /C=GB/ST=Greater Manchester/L=Sa
1ford/0=COMODO CA Limited/CN=COMODO RSA Domain Validation Secure Server CA

313 INFO habari.TBTCommAdapterIndySSL - Not After: 09.04.2018 01:59:59

313 INFO habari.TBTCommAdapterIndySSL - Verifying SSL certificate

313 INFO habari.TBTCommAdapterIndySSL - Issuer: /C=GB/ST=Greater Manchester/L=Sa
1ford/0=COMODO CA Limited/CN=COMODO RSA Domain Validation Secure Server CA

313 INFO habari.TBTCommAdapterIndySSL - Not After: 09.04.2018 01:59:59

329 INFO habari.TBTStompClient - Connected with RabbitMQ/3.6.10 using STOMP 1.2
Sending message: Message: 0 sent at: 28.06.2017 10:26:43

Sending message: Message: sent at: 28.06.2017 10:26:43

Sending message: Message: sent at: 28.06.2017 10:26:43

Sending message: Message: sent at: 28.06.2017 10:26:43

Sending message: Message: sent at: 28.06.2017 10:26:43

Sending message: Message: sent at: 28.06.2017 10:26:43

Sending message: Message: sent at: 28.06.2017 10:26:43

oY U W N

66 Habari Client for RabbitMQ 6.12

Sending message: Message: 7 sent at: 28.06.2017 10:26:43
Sending message: Message: 8 sent at: 28.06.2017 10:26:43
Sending message: Message: 9 sent at: 28.06.2017 10:26:43

Done.

Support
Support for SSL/TLS connections and the example adapter classes is not included in the
basic support package of Habari Client for RabbitMQ.

Useful Units 67

Useful Units

BTStreamHelper unit

This unit contains the procedure LoadBytesFromStream which can be used to read a file
into a BytesMessage.

Code example

// create the message
Msg := Session.CreateBytesMessage;

// open a file
FS := TFileStream.Create('filename.dat', fmOpenRead);

try
// read the file bytes into the message
LoadBytesFromStream (Msg, FS);

Size := Length (Msg.Content);

// display message content size
WriteLn (IntToStr (Size) + ' Bytes');

finally
// release the file stream
FS.Free;

end;

BTJavaPlatform unit

This unit contains some helper functions for Java dates. Java dates are Int64 values based
on the Unix date.

function JavaDateToTimeStamp (const JavaDate: Int64): TDateTime;

function TimeStampToJavaDate (const TimeStamp: TDateTime): Into64;

68 Habari Client for RabbitMQ 6.12

Library Limitations

MessageConsumer

How do I implement synchronous receive from multiple
destinations?

The library does not support synchronous receive from more than one destination over a
single connection.

To receive messages synchronously (using Receive and ReceiveNoWait) from two or more
destinations, create one connection per destination.

Background: all pending messages in a connection are serialized in one TCP stream, so
reading only the messages which come from one of the destinations would require
'skipping' all messages for other destinations.

Message properties

Only string data type supported by Stomp

The STOMP protocol uses string type key/value lists for the representation of message
properties. Regardless of the method used to set message properties, all message
properties will be interpreted as Java Strings by the Message Broker.

As a side effect, the expressions in a Selector are limited to operations which are valid for
strings.

Timestamp properties are converted to a Unix time stamp value, which is the internal
representation in Java. But still, these values can not be used with date type expressions.

Broker-specific exceptions
Apache ActiveMQ 5.6 introduced support for numeric expressions in JMS selectors8.

Multi threading

A session supports transactions and it is difficult to implement transactions that are multi-
threaded; a session should not be used concurrently by multiple threads.

Library Limitations 69

Free Pascal specific restrictions

the library has only been tested on the Windows platform

the included unit test project uses FPCUnit for Free Pascal / Lazarus instead of
DUnit

the complimentary code for map and object messages do not support Free Pascal
the library source code uses the Delphi mode switch {$MODE DELPHI}
other limitations or restrictions may apply

Broker-specific limitations

Transacted Sessions

Transactional acknowledging

The STOMP implementations of Artemis and OpenMQ message broker do not support
transactional acknowledging of incoming messages.

Other broker specific limitations

For broker-specific notes, please read chapter Broker-specific notes.

70 Habari Client for RabbitMQ 6.12

Frequently Asked Questions

Technical questions

Why am I getting 'undeclared identifier
IndyTextEncoding_UTFS8'?

Short answer
Your Indy version is too old.

Long answer
The library requires a current Indy 10.6.2 version.

Solution
Please download a newer Indy version.

Why am I getting ‘Undeclared identifier: 'TimeSeparator'’?

Short answer
Your Synapse version does not support your version of Delphi

Long answer
Delphi XE4 removed twenty deprecated global variables. For more details, see

http://docwiki.embarcadero.com/RADStudio/XE4/en/Global_Variables.

Solution
Please use Indy instead of Synapse or use a compatible version of Synapse.

Why am I getting 'Found no matching consumer' errors?

Short answer

The client closed a consumer while there still were pending messages on the wire for it,
and then tried to receive the pending messages with a new consumer.

http://docwiki.embarcadero.com/RADStudio/XE4/en/Global_Variables

Frequently Asked Questions /1

Long answer

If the client subscribes to a destination, it creates a unique subscription identifier and
passes it to the broker. Messages which the broker sends to the client always include this
subscription identifier in their header properties. The client verifies that the subscription id
in the incoming message has the same id as the consumer.

If the client closes the consumer before all messages waiting on the wire have been
consumed, and creates a new subscription (which has a new unique id), the remaining
messages which are waiting on the wire, will have a subscription id which does not match
the id of the new subscription. The client will raise an exception if no matching consumer
can be found.

Solution

Do not create another consumer on the same connection while there are still pending
messages for the first consumer. To discard all pending messages which are still waiting on
the wire, the client can simply close the close the connection and create a new consumer
on a new connection.

Example
Here is a small code example which causes this error®’:

Code example

procedure TErrorHandlingTests.TestReceiveMessageForOtherSubscription;
var

Factory: IConnectionFactory;

Conn: IConnection;

Session: ISession;

Destination: IDestination;

Producer: IMessageProducer;

Consumer: IMessageConsumer;

Msg: IMessage;

begin
Factory := TBTConnectionFactory.Create;
Conn := Factory.CreateConnection;
Conn.Start;
Session := Conn.CreateSession (amAutoAcknowledge) ;
Destination := Session.CreateQueue (GetQueueName) ;
Consumer := Session.CreateConsumer (Destination);
Producer := Session.CreateProducer (Destination);
Msg := Session.CreateMessage;

Producer.Send (Msqg) ;
Consumer.Close;

Consumer := Session.CreateConsumer (Destination);
Consumer .Receive (1000) ;
end;

In line 20 and 21, the consumer is closed and a new consumer created for the same
destination.

The Receive in line 22 will detect that the incoming message does not have a matching
consumer id and raise an ElllegalStateException.

27 This code example is included in the library unit test project

/2 Habari Client for RabbitMQ 6.12

Does the library support non-Unicode Delphi versions?

Short answer
No, the library does not support non-Unicode Delphi versions.

Long answer

The library makes uses of language features which have been added in Delphi 2009 / Free
Pascal 3.2.0. Support for non-Unicode Delphi ended in April 2017.

How can the client application detect network connection
loss?

Short answer
Use Stomp heart-beating

Long answer
By enabling heart-beating, the client can request server -side sending of heart beat bytes.

Even if the client only wants to consume messages and never send messages, the server
should continuously send heart-beat bytes within the negotiated time.

To detect if the server has sent a heart-beat, the client calls the method ReceiveHeartbeat.

For more details, please check the paragraph “"Reading server-side heartbeats” on page
47.

Online Resources 73

Online Resources

Third-party libraries

Indy

Indy is an open source client/server communications library that supports TCP/UDP/RAW
sockets, as well as over 100 higher level protocols including SMTP, POP3, IMAP, NNTP,
HTTP, FTP, and many more. Indy is written in Delphi but is available for C++Builder,
Delphi, FreePascal, .NET, and Kylix.

Project home https://www.indyproject.or
GitHub https://github.com/IndySockets
SLF4P

SLF4P is a simple logging facade for Object Pascal, developed with Dephi 2009 and
Lazarus 2.0. Tested with DUnit and FPCUnit.

Project home https://github.com/michaellustin/sif4p
JsonDataObjects

JsonDataObjects is a JSON parser for Delphi 2009 and newer
GitHub https://github.com/ahausladen/JsonDataObjects
Synapse

Project home http://synapse.ararat.cz

Subversion http://svn.code.sf.net/p/synalist/code/trunk

http://svn.code.sf.net/p/synalist/code/trunk/
http://synapse.ararat.cz/
https://github.com/ahausladen/JsonDataObjects
https://github.com/michaelJustin/slf4p
https://github.com/IndySockets
https://www.indyproject.org/
https://www.indyproject.org/
https://www.indyproject.org/

/4 Habari Client for RabbitMQ 6.12

Specifications

Stomp - Simple (or Streaming) Text Oriented Messaging
Protocol®®

Stomp home https://stomp.github.io/index.html
Stomp 1.2

Stomp 1.1

Stomp 1.0

Broker-specific Stomp documentation

ActiveMQ https://activemg.apache.org/stomp.html

Artemis https://activemg.apache.org/components/artemis/documentation/
latest/stomp.html

RabbitMQ https://www.rabbitmg.com/stomp.html

Online articles

Title Broker
Firebird Database Events and Message-oriented Middleware? All
Discover ActiveMQ brokers with Delphi XE4 and Indy 10.6*° ActiveMQ
Official RabbitMQ Management REST API Documentation?! RabbitMQ
How to use the RabbitMQ Web-Stomp Plugin?®? RabbitMQ
RPC with Delphi client and Java server using RabbitMQ* RabbitMQ

en. WIkI edla org/wiki/Streaming_Text Orlented Messaging_ Protocol

and- mdv 10-6/
31 https://mikejustin.wordpress.com/2012/10/26/official-rabbitmg-management-rest-api-
documentatlonz

usmg.-rabbltmgz

https://mikejustin.wordpress.com/2013/05/21/rpc-with-delphi-client-and-java-server-using-rabbitmq/
https://mikejustin.wordpress.com/2013/05/21/rpc-with-delphi-client-and-java-server-using-rabbitmq/
https://mikejustin.wordpress.com/2013/11/27/how-to-use-the-rabbitmq-web-stomp-plugin-with-delphi-and-free-pascal/
https://mikejustin.wordpress.com/2013/11/27/how-to-use-the-rabbitmq-web-stomp-plugin-with-delphi-and-free-pascal/
https://mikejustin.wordpress.com/2012/10/26/official-rabbitmq-management-rest-api-documentation/
https://mikejustin.wordpress.com/2012/10/26/official-rabbitmq-management-rest-api-documentation/
https://mikejustin.wordpress.com/2013/07/07/discover-activemq-brokers-with-delphi-xe4-and-indy-10-6/
https://mikejustin.wordpress.com/2013/07/07/discover-activemq-brokers-with-delphi-xe4-and-indy-10-6/
https://mikejustin.wordpress.com/2012/11/06/firebird-database-events-and-message-oriented-middleware/
https://mikejustin.wordpress.com/2012/11/06/firebird-database-events-and-message-oriented-middleware/
https://www.rabbitmq.com/stomp.html
https://activemq.apache.org/components/artemis/documentation/latest/stomp.html
https://activemq.apache.org/components/artemis/documentation/latest/stomp.html
https://activemq.apache.org/stomp.html
https://stomp.github.io/stomp-specification-1.0.html
https://stomp.github.io/stomp-specification-1.1.html
https://stomp.github.io/stomp-specification-1.2.html
https://stomp.github.io/index.html
http://en.wikipedia.org/wiki/Streaming_Text_Oriented_Messaging_Protocol

Online Resources /5

Online Videos

Title Broker
Introduction to Messaging With Apache ActiveMQ* ActiveMQ
GlassFish Message Queue - High Availability Clusters®® OpenMQ

34 http://vimeo.com/12654513
35http://www.youtube.com/watch?v=RHUJIBsy3udU

http://www.youtube.com/watch?v=RHUJBsy3udU
http://vimeo.com/12654513

/6 Habari Client for RabbitMQ 6.12

Support

Bug reports and support inquiries

Please send bug reports and support inquiries to Habarisoft and specify your message
broker type and version.

To allow fast processing of your inquiry, please provide a detailed problem description,
including configuration and environment, or code examples which help to reproduce the
problem.

Advanced support

Advanced and experimental features such as (for example) SSL, third party libraries, Free
Pascal, Linux, non-Unicode Delphi versions and message broker configuration are not
covered by the basic support scheme.

Broker-specific notes /77

Broker-specific notes

Minimum supported broker version

The minimum supported broker version for Habari Client for RabbitMQ 6.12 is RabbitMQ
3.8.0.%°

The client library does not check the broker version, however client code may check the
server version string.?’

Online resources

The web page https://www.rabbitmq.com/stomp.html documents details of the STOMP
implementation in RabbitMQ, including broker-specific extensions.

Note If you use broker-specific extensions, be aware that moving to
a different broker and a different version of Habari Client library
later will require more than a simple recompilation of source
code

Message type detection

The library determines the type (binary or text) of incoming messages based on the
content-type header:

- If the header starts with ‘text/’, the message will be treated as a text message.
+ Otherwise, it will be treated as a binary message (IBytesMessage).

Other STOMP clients (for example node.js) may be not aware of this RabbitMQ specific
rule. If they send a text message without setting content-type to ‘text/plain’, Habari Client
for RabbitMQ will misinterpret them as binary messages.

To fix this, adjust the producer client code to include the content-type header with value
‘text/plain’”.

36 https://www.rabbitmqg.com/changelog.html
37 see IConnectionInfo.StompServerName

/8 Habari Client for RabbitMQ 6.12

Prefetch count
The RabbitMQ STOMP documentation explains that

“The prefetch count for all subscriptions is set to unlimited by default. This can be
controlled by setting the prefetch-count header on SUBSCRIBE frames to the
desired integer count.”

With Habari Client for RabbitMQ, the prefetch-count header can be set using a parameter
on the destination name for a message consumer:

Code example

// create a queue with a prefetch count of 3
Queue := Session.CreateQueue ('ExampleQueue?prefetch-count=3");

// create a consumer for this queue
Consumer := Session.CreateConsumer (Queue) ;

Msg := Consumer.Receive (1000);

Destination types
The RabbitMQ STOMP documentation describes five destination types:

+ /exchange — SEND to arbitrary routing keys and SUBSCRIBE to arbitrary binding
patterns;

« /queue — SEND and SUBSCRIBE to queues managed by the STOMP gateway;

+ /amg/queue — SEND and SUBSCRIBE to queues created outside the STOMP gateway;

+ /topic - SEND and SUBSCRIBE to transient and durable topics;

+ /temp-queue/ — create temporary queues (in reply-to headers only).

Habari Client for RabbitMQ supports all these types: for the special RabbitMQ destination
names with "/amg/queue" or "/exchange", the prefixes can be used in the
Session.CreateTopic / Session.CreateQueue methods.

Code example

// effective destination address: /queue/myqueue
Queue := Session.CreateQueue ('myqueue');

// effective destination address: /topic/mytopic
Topic := Session.CreateTopic('mytopic');

// effective destination address: /exchange/myexchange/key

Queue := Session.CreateQueue ('/exchange/myexchange/key') ;
// or
Topic := Session.CreateTopic ('/exchange/myexchange/key") ;

// effective destination address: /amg/queue/rpc_gqueue
Queue := Session.CreateQueue ('/amg/queue/rpc queue');

Broker-specific notes 79

Header properties

Habari Client for RabbitMQ does not process these RabbitMQ specific*®* STOMP headers:
amqp-message-id the AMQP message-id property
content-encoding the content-encoding property

Auto-delete queues

The RabbitMQ STOMP plug-in supports advanced queue features, which can be defined in
the management interface but also from clients when the queue is created. No matter how
these features have been declared, RabbitMQ requires that the client specifies the same
feature settings anytime when this queue is used.

If a queue has been created with the auto-delete flag set, the queue is deleted when all
consumers have finished using it.*

Creation of an auto-delete queue

If the queue does not exist yet, it may be created dynamically by subscribing

Code example

ClientCallbackQueue := Session.CreateQueue ('Callback?auto-delete=true');

Consumer := Session.CreateConsumer (ClientCallbackQueue) ;

The admin interface will show that the auto-delete feature is enabled.

Sending a message to the auto-delete queue

Sending a message to this queue requires to specify that the auto-delete feature is
enabled:

Code example

Msg := Session.CreateTextMessage;
Msg.SetStringProperty ('auto-delete', 'true');

Producer.Send (Msgqg) ;

38 https://www.rabbitmqg.com/stomp.html
39 https://www.rabbitmg.com/amqgp-0-9-1-reference.htm

80 Habari Client for RabbitMQ 6.12

Queues with x-max-priority
The RabbitMQ STOMP plug-in supports advanced queue features, which can be defined in

the management interface but also from clients when the queue is created. No matter how

these features have been declared, RabbitMQ requires that the client specifies the same
feature settings anytime when this queue is used.

Creation of the queue

If the queue does not exist yet, it may be created dynamically by subscribing

Code example

PriorityQueue := Session.CreateQueue ('Priority?x-max-priority=20');

Consumer := Session.CreateConsumer (PriorityQueue) ;

The admin interface will show that the maximum priority is 20.

Sending a message to the queue

Sending a message to this queue requires to specify that the maximum priority is 20:

Code example

Msg := Session.CreateTextMessage;
Msg.SetIntProperty ('x-max-priority', 20);

Producer. Send (Msqg) ;

Hint: check the broker log

If your STOMP client code works with special destination features and does not work as
expected, always check the RabbitMQ broker log file. On Windows, you may find it in
%APPDATA%\RabbitMQ\log. On Unix, it is located in ${install_prefix}/var/log/rabbitmq
(File_Locations documentation).

Quorum queues

Quorum queues can be read, if the type is specified in the subscription STOMP frame. To
do this, append the x-queue-type parameter to the queue name:

Code example

// create a destination
Queue := Session.CreateQueue ('my-queue?x-queue-type=quorum') ;

https://www.rabbitmq.com/relocate.html

Broker-specific notes

// read the quorum queue value
Consumer := Session.CreateConsumer (Queue) ;
Msg := Consumer.Receive (10000) ;

Send a value to a quorum queue

Code example

// create a destination (but do not specify the queue type)
Queue := Session.CreateQueue ('my-queue') ;

// send the quorum queue value
Producer := Session.CreateProducer (Queue) ;
Producer.Send (Session.CreateTextmessage('42')) ;

81

Temporary queues

RabbitMQ does not support message acknowledge with temporary queues.

To notify about this limitation, Habari Client for RabbitMQ raises an exception when
Msg.Acknowledge is called on a temporary destination (queue or topic).

Special character encoding in STOMP headers

If a client sends a STOMP header to the RabbitMQ message broker which contains a colon

character, the broker will escape it according to the STOMP 1.1 specification as \c.

However this happens independent of the STOMP version - even if the library uses STOMP

1.0 for the connection.

The Habari Client for RabbitMQ will not translate this non-standard escape sequence back

to the colon character.

As a workaround, client applications should prefer STOMP 1.2 as this will activate correct

escape sequence conversion.

82 Habari Client for RabbitMQ 6.12

Durable subscriptions with RabbitMQ

Description

If a client needs to receive all the messages published on a topic, including the ones
published while the subscriber is inactive, it uses a durable TopicSubscriber.

The broker retains a record of this durable subscription and insures that all messages from
the topic's publishers are retained until they are acknowledged by this durable subscriber
or they have expired.*

In RabbitMQ, the combination of the topic name and the durable subscriber name
uniquely identifies the durable topic subscription.*

AMQP Semantics
For SUBSCRIBE frames, a shared queue is created for each distinct subscription

ID x destination pair, and bound to the amq.topic exchange with routing key
<name>. A subscription is created against the queue.

After you restart your program and re-subscribe, the broker will know which messages
you need that were published while you were away.

Note: if the same combination of topic name and durable subscriber name is used by
more than one client, the broker behavior is undefined — messages can be distributed
between clients, or one client will receive all messages and other clients never see a
message.

Creation

The ISession interface contains the CreateDurableSubscriber method which creates a
durable subscriber to the specified topic.

A durable subscriber MessageConsumer is created with a unique durable subscriber name.

Code example
// create a durable subscription
Topic := Session.CreateTopic ('ExampleTopic');

Consumer := Session.CreateDurableSubscriber (Topic, 'my-subscription-id');

40 https://download.oracle.com/javaee/5/api/javax/jms/TopicSession.html
41 https://www.rabbitmg.com/stomp.html

Durable subscriptions with RabbitMQ 83

Deletion

To delete a durable subscriber, RabbitMQ requires that the client first subscribes and then
unsubscribes.

Code example

// first subscribe, then unsubscribe

Topic := Session.CreateTopic ('ExampleTopic');
Session.CreateDurableSubscriber (Topic, 'my-subscription-id');

Session.Unsubscribe (Topic, 'my-subscription-id');

Test tool example

With the ProducerTool and ConsumerTool demo applications, you can send messages to a
durable topic:

ProducerTool --MessageCount=1000 --Topic --Persistent --Subject=test-durable

and receive them from a client:

ConsumerTool --MaximumMessages=1000 --Topic --Subject=test-durable --Durable --
ConsumerName=12345 -Verbose

84 Habari Client for RabbitMQ 6.12

Connection troubleshooting

Performance demo

Socket error 10060 (Connection timed out)

If the specified host is unreachable, a ,Connection timed out” error will occur.

Socket error 10061 (Connection refused)

If the broker service is not running on the specified host and port, a ,,Connection refused”
error will occur:

Broker URL |stomp:fﬂoca|host

User guest Habari Client for RabbitMC: 617 performance test application ol

=i guest The connection has failed due to a transport problem: Socket Error # 10061
Connection refused.

| Test connection | (904 1 Cancel 1

The default port for STOMP on RabbitMQ is 61613. The port can be specified in the Broker
UR:

Broker URL |sb:ump:,|’ﬂocalhost:61613 Habari Client for RabbitMQ ... X

User |guest
Connected with RabbithM(/3.9.5 | —

Password |guest

Test connection Ok Cancel

Connection troubleshooting 85

Socket error 10054 (Connection reset by peer)

If the broker service is running on the specified host and port, but the port does not
accept STOMP client connections, a ,Connection reset by peer” error will occur:

Broker URL |sb3mp:fﬂncalhnst: 5672

User |guest

Password guest

Habari Client for RabbitMC 6.11 performance test application >

The connection has failed due to a transport problem: Socket Error # 10034
Connection reset by peer,

| Test connection

In this case the broker log contains a ‘bad_header’ <<”CONNECT\n">> error message.
The IP address of the client and the port number used by the client are included in the log
messages, so they can be identified.

Note that in the example below, client and host are on localhost (127.0.0.1).

[info] <0.1233.0> accepting AMQP connection <0.1233.0> (127.0.0.1:56184 ->

127.0.0.1:5672)

[error] <0.1233.0> closing AMQP connection <0.1233.0> (127.0.0.1:56184 ->
127.0.0.1:5672) :

[error] <0.1233.0> {bad header, <<"CONNECT\n">>}

References

See also:
« https://www.rabbitmqg.com/troubleshooting-networking.html
« https://www.rabbitmqg.com/stomp.html

« https://www.rabbitmg.com/networking.html

86 Habari Client for RabbitMQ 6.12

Index

Reference
BTBrokerConsts......ccovvviiiiiiiiiiiiiinennnns 58
BTCommAdapterIndy........covviivvviinnnnnnn. 21
Bug reports.. .o 76
CheckHeartbeat.........ccooviiiiiii e, 47
Conditional symbols for unit test projects
... 63
Connect.accept-version..........ovvvvvveen 45
Connect.heart-beat...........coviiiiiinnn . 45
Connect.host....cccoiiiiiiiiii 45
Connection.....ccovii e 22
Connection URL......cccvviiiii e 22
ConnectionFactory......ccovviiiiiniiiinnnnnns 21
ConnectTimeout.....ccvvvvviiiiiiiiiiiiiiees 10
ConsumerTool....uvviii i e 50
CreateDurableSubscriber................. 32, 82
Credentials....cccoviiiiiiiiic e 58
Destination........cooiviiiiiiiiiiicc e 27
DISCONNECT Receipt.....cccvvviiiieiinnnnn.. 20
DUNIt. e 8, 57
ElllegalStateException........ccccvvvviinennnn. 71
Enables tests for experimental / optional

(U] T 63
Experimental features............ccoevvviinnnn. 76
Failover Support.......ccoooviiiiiii i, 17
For more details, please check the
paragraph “Reading server-side
heartbeats” on page 47..........ccoviinent. 72
FPCUNIE. . etveeeete e eeteeeeeeeeee e enaeaaes 8, 57
Free Pascal.......ccov i i e 8
HABARI_LOGGING.........ccvviiiieeennn 59, 61
HABARI_SSL_SUPPORT..............u.... 61, 65
HABARI_TEST_OPTIONAL_UNITS.......... 63
HABARI_TEST_SYNAPSE..........ccoieviinens 63
HABARI_USE_INTERCEPT..................... 62
HABARI_USE_INTERCEPT_STDOUT........ 62
IBytesMessage......ovvvvviiiiiiiiiiinnnnnneenss 77
IdInterceptSimLOg.....ovvvvviviiniiiineinnenns 62
IHeartbeat......coovviii 46
IMQCONSUMEI . ittt it e iiiiieeeeeees 44
IMQContext...cvvviiiiiiic 43

IMQProducer.....c.coiviiiiiiiiii i e 43

InterceptSimLOg....ccovvvviiiiiiiiiiiieeieeens 62
Internet Direct (INdy)....ccoviivvviiieniinennnnn. 8
JMSCorrelationID.......cccviiiiiiiiiiiie s 34
JMSDeliveryMode........coviviiiiiiiie e, 34
JMSEXpiration......ccovvviiiiiiiiiie e 34
JMSMessageld........coovviiiiiiiiiiici e 35
IMSPrIiOritY .o 34
JMSREPIYTO. e e 34f.
JMSTimestamp....coooviiiiiii e 35
Limitations....c.ooovivivn i 10, 68
I 76
(o« o 1| [« FAr 59
LoggingHelper......ccveviiiiii i i e 59
Map MESSageS.....ivvviiiiiiiiiieiiieen i 37
MapMessageTransformerTests................ 40
Message CONSUMEI.....vviieeviiiririniinnennnns 30
Message Producer..........covviiviiiiiininennns 29
Message properties.....ccoevviiiininnneneennnnn, 68
Multi threading........covveviiiii s 68
Multiple destinations..........cccviiiiiinn 68
Object Message.....c.oovvivviiiiiniiiinenninenns 41
ObjectMessageTransformerTests............ 42
OPENSSL..iiiiii i i e 61, 64f.
Point-to-point.........cooviiiiiii 27
Prefetch.. ..o 78
ProducerTool....cccoiiiiiiiiiiiiic i 52
Programming Model............cocoovviinnnne. 11
Publish and subscribe..............ocvviinins 27
QUEUE. .t 27
ReCeiVe. ..o 30
ReceiveHeartbeat...........ocovviiiiiinnnnnnn. 47
ReceiveHeartbeat...........ccoooiiiii e 72
ReceiveNoWait.......ccovv i 31
SeleCtor. it 68
SeleCtorS. . i e 36
SEND Receipt. v i e 19
SendHeartbeat..........cccoiiiiiie i 46
<1751 (0] o TR 22
SetDefaultAdapter.......ccocvviiiiiiviinnnnnnns 65
SimpleLogger....ccoviiiiiiiiii e 60
Socket error 10054.......cviiiiiiiiieiaen s 85

Index 87

Socket error 10060.........ccvvvivviieiinennnnns 84 | The DUnit test suite requires the Delphi
Socket error 10061.......ccvvivviviiiiiennnnnnns 84 2009 version of DUnit for compilation...... 8
11) I 76 The FPCUnit test suite.requires Lazarus....8
SEOMP 1.2, e 45 Throughput test.......ccoooiiiiiiiiiie e 56
StOMPHSS] i 64 e o [28
Subscribe.receipt......cccviiiiiiiiiiiie 19 TopicSubscriber.....cccvvviviiiiiiiieiiinnnnn 32, 82
SUPPOM . i e 76 Transacted Sessions.......ccvvvvviinnnn. 24, 69
SYNAPSE. e 8, 10 TransactionsS.......ocovviiiiiii i 68
SYyNChronous reCeive......coovvvviieiiinnnenns 68 UNit TeSTS. ot 57
TBTCommAdapterIndySSL.............c...e. 64 Virtual host..ooo i 45
LI 2P B8 | i 72
Test destinations..........ccevvi i inennnn 58 FECEIPE. i 19f
Table Index

Table 1: CommuUNICatioN AdaPlerS. ittt i i et ra e ranaeeeranas 10
Table 2: Failover TransSport OPtioNS. ..uuiiii it ii i i s e r e s riae e s eaneees 17
Table 3: Session Creation ParamEterS. .. e e 24
Table 4: Example Applications (in alphabetic order)......cccoviiiiiiiiiiiiiii 49
Table 5: ConsumerTool Command Line OptioNS......cvvrviiiiii i neeraneeenes 50
Table 6: ProducerTool Command Line OptioNS......ccviiiiiiiiiiii e e eeeaes 52
Table 7: Throughput Test Tool Command Line OptioNS......iviviiiiiiiiiii i i e 56
Table 8: Communication Adapters with SSL SUPPOIrt.....ocviiiiii e e 64

lHllustration Index

Illustration 1: Programming MoOdel......coiiiiiiiiiii i e e e 11
Illustration 2: Connection configuration dialog example......c.ccociiiiiiiiiiiiciiic e 49
Illustration 3: ConsumerTool demo application........ccooviiiiiiiiii e 50
Illustration 4: ProducerTool demo application.......ccooiiiiiiiiiii i e 52
Illustration 5: Performance Test Application.......cooviiiiii i e raaeeeas 54

Illustration 6: Throughput test tool OULPUL......ooii i e 56

	Broker-specific information
	Installation
	Requirements
	Development Environment
	TCP/IP Communication Library
	Test Suites

	Installation steps

	Communication Adapters
	Introduction
	Configuration of communication adapters
	Registration of communication adapter class
	Available communication adapters
	Limitations of the Synapse communication adapter class

	The Programming Model
	New simplified API

	Tutorials
	Quick Start Tutorial
	Setting up the project
	Adding code to the project
	Run the demo
	Check for memory leaks
	Tutorial source code

	Connection Factory
	Overview
	Creation and configuration
	Connection URL parameters
	Heart-beating Support

	Failover Support
	Failover Transport Options

	Receipt Support
	SUBSCRIBE Receipt
	UNSUBSCRIBE Receipt
	SEND Receipt
	DISCONNECT Receipt

	Connections and Sessions
	Connections use Stomp 1.2 by default
	Step-by-Step Example
	Overview
	Add required units
	Creating a new Connection
	Connection URL Parameters
	Creating a Session
	Using the Session
	Closing a Connection

	Session types overview
	Transacted Sessions
	Create a transacted session
	Send messages
	Committing a transaction
	Rolling back a transaction
	Transacted message acknowledgement

	Destinations
	Introduction
	Create a new Destination
	Queues
	Topics

	Producer and Consumer
	Message Producer
	Persistent messages

	Message Consumer
	Message Selector

	Synchronous Receive

	Durable Subscriptions
	Description
	Creation

	Temporary Queues
	Introduction
	Library Support
	Resource Management

	Message Options
	Standard Properties
	Properties for outgoing messages
	Properties for incoming messages

	Reserved property names
	Examples
	Prefix for custom headers

	Selectors
	Supported message brokers

	Map Messages
	Introduction
	Usage Example
	Map Message Transformer
	Transformation Identifier
	Example ProducerTransform implementation with TStrings

	Object Messages
	Introduction
	Object Message Transformer

	Simplified API
	New interface types
	IMQContext interface
	IMQProducer interface
	IMQConsumer interface
	Source code example

	Stomp 1.2
	Connection configuration
	Specification

	Sending heart-beat signals
	Checking for incoming heartbeats
	Reading server-side heartbeats

	Example Applications
	Shared units for demo projects
	ConsumerTool
	Examples

	ProducerTool
	Examples

	Performance test
	Throughput test
	Examples

	Unit Tests
	Introduction
	Test project configuration
	Logging
	Optional units

	Test units
	Test execution
	Requirements
	Test destinations

	STOMP 1.2

	Logging with SLF4P
	Introduction
	IDE and project configuration
	Delphi
	Lazarus

	LoggingHelper unit

	Conditional Symbols
	Caution
	Conditional symbols for release builds
	HABARI_ALLOW_UNKNOWN_URL_PARAMS
	HABARI_LOGGING
	HABARI_SSL_SUPPORT
	HABARI_USE_INTERCEPT
	HABARI_USE_INTERCEPT_STDOUT

	Conditional symbols for unit test projects
	HABARI_TEST_OPTIONAL_UNITS
	HABARI_TEST_SYNAPSE

	SSL/TLS Support
	SSL communication adapter classes
	Mixed Use
	SSL configuration

	Indy SSL Demo
	Notes
	Example output

	Support

	Useful Units
	BTStreamHelper unit
	BTJavaPlatform unit

	Library Limitations
	MessageConsumer
	How do I implement synchronous receive from multiple destinations?

	Message properties
	Only string data type supported by Stomp

	Multi threading
	Free Pascal specific restrictions
	Broker-specific limitations
	Transacted Sessions
	Other broker specific limitations

	Frequently Asked Questions
	Technical questions
	Why am I getting 'undeclared identifier IndyTextEncoding_UTF8'?
	Why am I getting ‘Undeclared identifier: 'TimeSeparator'’?
	Why am I getting 'Found no matching consumer' errors?
	Does the library support non-Unicode Delphi versions?
	How can the client application detect network connection loss?

	Online Resources
	Third-party libraries
	Indy
	SLF4P
	JsonDataObjects
	Synapse

	Specifications
	Online articles
	Online Videos

	Support
	Bug reports and support inquiries
	Advanced support

	Broker-specific notes
	Minimum supported broker version
	Online resources
	Message type detection
	Prefetch count
	Destination types
	Header properties
	Auto-delete queues
	Creation of an auto-delete queue
	Sending a message to the auto-delete queue

	Queues with x-max-priority
	Creation of the queue
	Sending a message to the queue
	Hint: check the broker log

	Quorum queues
	Send a value to a quorum queue

	Temporary queues
	Special character encoding in STOMP headers

	Durable subscriptions with RabbitMQ
	Description
	Creation
	Deletion
	Test tool example

	Connection troubleshooting
	Performance demo
	Socket error 10060 (Connection timed out)
	Socket error 10061 (Connection refused)
	Socket error 10054 (Connection reset by peer)
	References

	Index

