gg HABARI

LIENT LIBRARIES

Getting started with

Habari Client for Artemis
Version 6.4

2 Habari Client for Artemis 6.4

LIMITED WARRANTY

No warranty of any sort, expressed or implied, is provided
in connection with the library, including, but not limited
to, implied warranties of merchantability or fitness for a
particular purpose. Any cost, loss or damage of any sort
incurred owing to the malfunction or misuse of the library
or the inaccuracy of the documentation or connected with the
library in any other way whatsoever is solely the
responsibility of the person who incurred the cost, loss or
damage. Furthermore, any illegal use of the library is
solely the responsibility of the person committing the

illegal act.

Trademarks

Habari is a trademark or registered trademark of Michael Justin in Germany and/or other countries.
Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions. The
Android robot is reproduced or modified from work created and shared by Google and used according to
terms described in the Creative Commons 3.0 Attribution License. Embarcadero, the Embarcadero
Technologies logos and all other Embarcadero Technologies product or service names are trademarks,
service marks, and/or registered trademarks of Embarcadero Technologies, Inc. and are protected by the
laws of the United States and other countries. IBM and WebSphere are trademarks of International
Business Machines Corporation in the United States, other countries, or both. HornetQ, WildFly, JBoss
and the JBoss logo are registered trademarks or trademarks of Red Hat, Inc. Mac OS is a trademark of
Apple Inc., registered in the U.S. and other countries. Oracle, WeblLogic and Java are registered
trademarks of Oracle and/or its affiliates. Pivotal, RabbitMQ and the RabbitMQ logo are trademarks
and/or registered trademarks of GoPivotal, Inc. in the United States and/or other countries. Other brands
and their products are trademarks of their respective holders.

Errors and omissions excepted. Specifications subject to change without notice.

Contents
Broker-specific information........c.ccviiimiiirirnrsre s s s s nn 7

B0 T o= 1 1 = 1 o o o TP -

2= LT =T 03 =T 3 R 8
Development ENVIFONMENE. ...t as 8
TCP/IP Communication Library...ccooiiiiiii i e e e 8

Installation steps.......ccciiiiiiiiii i i v s r s s r s a s 8

Simplified API introduced in version 6.0.......cccccmiemmmnmrmsnsssssnssssssnssssnnnss9

New interface tyPesS...cuiiiiiiiitiiirrasnre s srs s rra s rra s rra s sra s sra s s s s anassannnsnannsnnnnsnnns 9
IMQContext interface......iciicrimrmrriririerasass s s s ssass s sssnssnnssnnsnnnsnnnnnns 9
IMQProducer interfacCe.....ccciveririerimrnrriersessnsassessassassasansanssasssnsssnssnnssnnsnnnsnnnnnns 9
IMQConsumer iNterfacCe......vciirierieransi s s s s sansra s s sansnanssnnsansnnnssnannnns 10
Source code eXample.....icieriiiiari s s s s rara s aaraaanranaannna 10

Breaking changes in version 6.0........ccuvciimminnssnrsssssssssssssnssssssnssnnnaa 11

Removed conditional synmbol HABARI_RAW_TRACE.........cciriccmmmmnnssnnnsannnss 11
Removed support for asynchronous message receive.....c.cuvemmrrrinsrassnsnannns 11
Communication AdaptersS......ccuicrierririrmamssnssessanssssansssansssnsssansssanssnnnss 12
) o o T [T o o o Y o 12
Configuration of communication adapters.......ccoviiiiiiii e 12
Registration of communication adapter Class.....ccovviiiiiiiiiiii i i e 12
Available communication adapters......oviiiiii i e 13
Limitations of the Synapse communication adapter class........coviiviiiiiiiiieninnnnn, 13

The Programming Model.......cccciiiiiimmmsmssssssssssssssssssnssssssnsssssnnnsns 14

LT e 1 = 15
Quick Start Tutorial.......cciiiiirerie i s s s s s s s s a s nannnnnnnnnn 15
Setting Up the ProjJeCl. .. s 15
Adding code to the Project.o 15

o0 T o 1= =T o 17

(O a1 Tol " (o] ol g g 1= o g Lo T oV 1= =1 <= 17
TULONIAl SOUNCE COOR. . uiuiitiitiitiit it et e e e s e s n e s e s e s e rnerness 18

Map Message Tutorial.....cccciiciiiciiirerirr s s s s s s s s s s ra s aaa s annnnnnnnnns 18
Setting Up the ProjJeCh. .. s 18
Adding code to the ProjecCt.......occiiiiiiiii e 18

U] I o [T (=T o J 21

Map Message Conversion with Apache ActiveMQ.........oviiiiiiiii i 21
LU e 1= Y =T o U] o= oo T L= T 21
Connection Factory.....ccciiiiiiimiimnsmnesmss s snssassssssnssssssnssssssnnnsnsannnnns 22
L 3T =T Y= e 22
Creation and configuration......c.cccveriramrresmnssesssnsrasssessanssnssansssnnsssnnsasnnssnannnss 22
Connection URL parameters......cccveiiiimriemansimmanssessasnssansssanssasnssssansssannsnnnnsnns 24

Heart-beating SUP PO . ..o e 24

4 Habari Client for Artemis 6.4

TCP Keep-Alive (only supported with Indy)....ccooiiiiiiiiiii e 24
Failover SUPPOrt......ccciiiiiiirirr s s s s s s s s s s sansnansannsansaannsnnnnsnnnnnss 24
(r= T Fo)VZ =T g I =T g =] o Yo ot @ o] [0 o =3 P 25
2 =T or =T o1 =] 1T 's T o oY o 26
SUBSCRIBE RECEIPE. 1ttt ittt ettt e e e e e e e e s e e s e e e e an e ennennnas 26
UNSUBSCRIBE RECEIPE. ..t utiitiiiiiiiiirsesssntests st e sas s s s s s s e s e sesaeseannsanens 27
] =] D 2T = | o o 27
D) ST @@]\ =l O I =Tl < o) 27

Connections and SEeSSIONS.....cuueercetsrrenssssssnnssssssnnssssssnssssssssnssnnnsnnnsnnnns 29

Connections use Stomp 1.2 by default.......ccccviciviiriirnsriesrsrresrs s ssse s sssa s ssnannns 29
Step-by-Step EXample...iiciiciiiiieiiirsri s s srs s s s ra s s sna s snnnnnanannsnannsnas 29
L@ YT Y = 29
Add reqUIrEd UNIES. ..o e et et r e e e e aaeeaas 29
Creating @ NeW CoONNECHION.ot e e e e e e e eaees 30
Connection URL Paramelers. ..o eraee e aans 30
(O g =T] o o = Y =11 o] o 30
0] oo I o TSI Y=o o] o PP 31
(@1 o1y o = I @] o1 T ot o [0 o FA P 31
SESSIiON tYPES OVEIVIEW. . ciuciuiierieriersmsassassassassasansassassnssnssnsanssnsssnssnnssnsssnssnnsnnnss 31
Transacted SeSSIONS....ccvririeriersranr s s s s s s s ssassssassassnssnsansansansannsnnnsnnnnnns 32
Create a transacted SESSION i s 32
Y= T I 0 g L= ET 3= T =T 33
Committing @ tranSaCtiON. .. e e 33
Rolling back a transaction......c.viieiiii i e 33
Transacted message acknowledgement......cooiiiiiiiiii i 34

[0 2T o 1 0 T 1 o0 1 1 C 1

B3) o o Yo Lo oY o R 35
Create a new Destination.......iiiiisssme s ssssssssssnnnssssssssssssssssssssnnnnssnsnnnnnnnnnnnnns 35
L@ T U 35
1o 5] [PP 36

Producer and CONSUM K. cuuerecstsssensssssssnsssssssnsssssssssssnnnnsssnnssnnnsnnnnnnnnnnns?

Message ProdUcCer....uiciiericrrmsierrasssnssanssassasssnssanssnssanssnsssnssssnnsssnnsssnnsssnnnsnnnnnss 37
T] T =]] ol 0 [T STT= Lo < 37
MESSAGE CONS UM I M tuuuaruassnsasssssssnssnnsssnnnnnsns 38
MESSAGE SElOCEO . . ettt e 38
SYNCRIrONOUS RECEIVE..iiuiumrumrerrarinrsasansassassassassnsassassassnssnssnsansassnssnsansansassnsnnnnnns 38
Durable SubSCHPtiONS....ciiiciiciiie i rs e srr s s s s s s s aa s asannnnnnnnns 40
[0 2T of o 1 o1 o ' 1 o e 40

L1 /=1 [0 1R 40

Temporary QUEUES....cccrursmmmrrsnsssssnsssssnnssssnnssssnnssssnnnsssnnssssnnnnnnnnnnnnnnnnnnsdl
0 o o [T o o o T o e 41

[T 0] = 2001 0 00 41
[N o YU ol <3 7 =T = =] =] | o 41

5

Message OptioNS....cccuviriimrmemmsnsssssssassssnsssnsssanssnnsssnnsnsnnnsnssnnnsssnnnnnnnnnsd2

Standard Properties.....cciuiiiiiiiinincinie s snse s rs s s s s ar s rnrnanrnnannnnnn 42
Properties for OUtgOIiNg MESSAGES . ..ttt ieaeate e e e e e e aneaneeaneenes 42
Properties for iNCOMING MESSAgES. .. uuuiriitiitiitiieiat et r e ane e eaesaeeaneaaneaness 42

Reserved property NameS..cccuuriemieriassanrsanssnssasssnssasssnssanssnssanssnssansanssanssnnnsnnnns 43
€=] 0] 1= 43
Prefix for CUSTOM NEAdEIS. .o i e aees 44

£ = = ot oo] oS 44
Supported MESSAGE DIrOKEIS. . ..ttt e e e 44

Object MeSSagesS...ccctirmmrminmmmmranmmsssnnssssnsssssnnssssnnssssssssssnnnnnnssssssnnnnnnnnnssdD

B3 8 ool X 1T ot o o o S 45
Object SerialiZation. ... i e 45
Message TranS oM ErS. i iiiii i raa s s s s s s s ras s asassasansssannssannsnnnnsnnnnnss 45
MemOory ManagemeEnt. ... 45
AsSSIgN @ MESSage Tran S O e . ..t i e e ae e aas 46
Create and Send an ObjJeCtMeSSage. .. .viir it e rneernes 46
Complete Example using NativeXml. ..o e 47

] o] 33 | o T 49
Connection configuration.......ccicvireremiirsrsmra s s s s s s ssassasansassassnssnsannans 49
1] 01T 15 [t= 1 o [o PP 50
Sending heart-beat signals......cvccviiieiirrasrnasmsssse s s srs s ss s s s ssasssansnnannnns 50
Checking for incoming heartbeats..........ccoicviiiiiisriesres i s s s s s r e rna e n e 51
Reading server-side heartbeats.........ccccviiiiiiiisissnisissrs s rre s e s s r i a s 51

Example ApplicationsS.....cocciimimnsmrsssrsssmssssssss s ssssssssssnssssssnnssssnns D2

Shared units for demo projects........ccvciicriiieinnrresrse s rsse s s srra s s raranannns 53
L0] 3 T T 1 3 =] o 1o T 1 54
€=] 0] 1= 55

2 o o [T T o= ol I X Y 56
= 1100 1T 56
Performance test.......cciiiiiiiiiiii i s sr s r s s r s rnanannan 58
Throughput test.......ccciiiiiii i v srr s s v s s s r s ra s a s aa s a s nm i mnas 60
€=]] 1= 60

0 T =T 61
B0 X o oo X 1T ot o o o F 61
Test project configuration.......cccveciiiiveiieinnsrresrsre s s s ssa s anannanannas 61
1o Y o 1 Y 61
NV 0 g T=ET== T TN oY T | o [61

L@ o] o =1 I U] 1 (= 61
Synapse commMUNICAtioN adapler..c.vviiiiii i i i e 61

B =3 T T 61
L= o= (= o] 1 e T o TS 62
Lo [U 1T =] o g =] Lo 62
Test destiNatioNS. .o 62

R 0 1 e 0 63

6 Habari Client for Artemis 6.4

Logging with SLFA4P........ccovcctimmmmnmsssmsssmssssssssssssssnsssasssasssansssnnsnnanns 04

0 o o [T o o o T o e 64
IDE and project configuration......cuccvemierieriersersmsssssessessnsassassassassnsansassassnssnnans 64
371 0] o 1 64
= 2= Y ol U = 64
LoggingHelper Unit......ccccciiiiimieimnmrisme s s s s s s ssassansnanssnssnnssnnnsannnssnnnnss 64

Conditional Symbols........ccciiiiicimisri s srs s s s s s sra s s ssn s snana s e e s 66

L0 11 T T o S 66
Conditional symbols for release builds.........ciicvmrmiriariesrsesssamsssasssssssssnnssans 66
HABARI_ALLOW_UNKNOWN_URL_PARAMS. ..ottt ee e aae e neaeas 66
HABARI _LOGGING. . tttiitiitiitttaeteee st eeeseaseassaseas s e e e s e eas e sn e aneaaneaaneanneaneanes 66
HABARI_SSL_ SUPPORT ..ttt st s et ese e s e s s asaa s e s e s e st s e rneraeaneenes 66
HABARI_TCP_KEEPALIVE.ttt s s st s s e s s s e s e saaeeees 67
HABARI_USE _INTERCEPT ...ttt st res e sse e e s e s e e s e s e s e sas e ann e e aeenneenes 67
Conditional symbols for unit test projects.......cccccveriiriririesricinnemssssas s ssnasnans 67
TEST _OPTIONAL _UNIT S ettt ittt sttt e e e e e e e s e s neanenaeanane e aereaneanerns 67
HABARI _TEST _SYN A PSE. .. ittt e r e e e r e s an e e neaneeaneanneanes 67
HABARI _TEST _USE_MGMT AP .. ittt e e aneeas 67
SSL/TLS SUPPOIt..cciiiiiiitrtrs s sras s sssasssassssssssanssansssnssssannnsssnnnnns 69
SSL communication adapter classes.........ccvecviiiiiiiinriesne s s s s e 69
= LU L= 69
135 I ol 11 o 18 = o o 69

B e AV TR T 1 o o SR 69
1[0 < 70
EXaMIPIE QU DU i e 70

£ s 0 T 1 o Oy 71

Useful UnitslllllllllIlll72
BTStreamHelper unit....cciiiciiiiie s rr v s r s s s r s r s ra s r s rrrnnannnnan 72
BTJavaPlatform UnNit....ccciiiiiiii s ssn s ssnss s s snna s s nn s s s a s s s nnna s nnnnnnnnns 72

Library Limitations.....ccicciiicmicsmismsnssnss s snsssssssssn s sssssnssnssnnssnsnnns 7.3

MESSAGECONSUIMI T autuunmrransrsassnssssnssssrss s rssssssssnsssmssssssssssssssssssssssssssssssnnssnnnnnsns 73
How do I implement synchronous receive from multiple destinations?................... 73
Message PropPertieS. .ucuieiiiaiiriasae s ss s ssnssasssn s s s sasansaaansanannsnannsnnnnsss 73
Only string data type supported by StOmMpP.....coiiiiiiiii 73
Multi threading......cccccviiiiiiriiresrn s r s s s s s s s s s s s s aannsnannnnnnnnns 73
Free Pascal specific restrictions........cccciiiiiiiiii i sn s snr s sr s sra s snamnnn s 74
Broker-specific limitations.......ccvciiiiieimiciresnis s sr s rr s s ra s s s rn i nnan s 74
L 11T e o =To IR TT] (o] o 1= 74
Other broker specific lIMitations.vii i i e e e i i e raes 74

Frequently Asked QUeStiONS.....cccuireiirireirmrsssssssssnsssssnsssssnnssssnnnsnsnnss 79

Technical qUESTIONS...c.ciiiiri s i s s s s s s s ra s s samsaan s nsannsannnnnnnnnss 75
Why am I getting 'undeclared identifier IndyTextEncoding_UTF8'?.......c.ccevvivvennnne. 75
Why am I getting ‘Undeclared identifier: 'TimeSeparator?........cccovviiiiiiiiiiiiiinnnns 75

Why am I getting 'Found no matching consumer' errors?......c.covviiiiiiiiiiiiiiieiinnan, 75

Broker-specific information 7

ONliNe RESOUICES. . iiiiiiiiintiransttrsassnssasssasasssaassssnsssssssssssnnnnnsssssssnnnnnnnns 77
Third-party libraries.....icciiieiiiiiirnsinre s rrse s rrs s rr s srr s srs s sr s s s a s s annannnnsnnnnns 77
Internet DireCt (TNAY) e e e e e e 77

] I S 77

] 1= =[O o = o = 77

YU 0=] o = ot 77

RS =1 511 78

£ X =T of | ot = 1 o o] o 1= 78

10 1 1 1T 3 1= = ot o] = 78
ONliNE Vid@OS. i iiiiiiini i niera s s sr s s s s s s rassaassaanssaannsasnnnssannsnnnnsnnns 79

R T 5 o T o o e 80
Bug reports and support iNQUIFIES.....cciciviiesricsresrr s s s s s rs s nnsnnnnanns 80
Y0 A= Tl =T I U 0 o 1o o 80
Broker-specifiC NOtES....ccuiiririnrmimsn s s sssassssansssssnnnssssnnnsssnnnnnnnnnns 81
Keep messages With no route......cccviiiciicicsrisirsn s v s rs v v s s n i n s 81
1o][5 o o 81

S =11 oL PP 81
Quick start guide for Apache ActiveMQ ArtemisS.....ccccrvemrvnnmrvanssnanssannas 82
3 1 =] | o Y o 82

I a1 83

Broker-specific information

For broker-specific notes, please read chapter
Broker-specific notes on page 81 ff. and Quick start
guide for Apache ActiveMQ Artemis on page 82.

8 Habari Client for Artemis 6.4

Installation

Requirements

Development Environment
- Embarcadero Delphi 2009 Update 4 or higher

_or-

+ Free Pascal 3.0.4 or higher

Lazarus 1.8 or newer is required to run the FPCUnit test suite. The DUnit test suite and
the GUI demo applications require Delphi 2009 for compilation.

TCP/IP Communication Library

+ Internet Direct (Indy) 10.6 (recommended)
- or -

« Synapse Release 40*

Installation steps

The installer application will guide you through the installation process.

By default Habari Client for Artemis will be installed in the folder
C:\Users\Public\Documents\Habarisoft\habari-<broker>-6.4

where broker is for example 'activemq' or 'rabbitmq' depending on your version.

1 Only release 40 of Ararat Synapse is used for Habari Client library development and tests

Simplified API introduced in version 6.0

Simplified API introduced in version 6.0

9

New interface types

The new API in Habari Client libraries 6.0 is based on three new interfaces which reduce
the amount of client code:

- IMQContext
« IMQProducer
« IMQConsumer

IMQContext interface

A IMQContext object encapsulates both the IConnection and the ISession object of the
classic API. The connection factory interface contains new methods to create IMQContext
objects:

Code example

function CreateContext: IMQContext; overload;

function CreateContext (const AcknowledgeMode:
TAcknowledgementMode) : IMQContext; overload;

function CreateContext (const Username, Password: string):
IMQContext; overload;

function CreateContext (const Username, Password: string;
const AcknowledgeMode: TAcknowledgementMode) :
IMQContext; overload;

The IMQContext provides methods to create messages, producer and consumer objects,
destinations (queues, topics, temporary queues, temporary topics, durable subscribers
and so forth), and for transaction control (commit, rollback).

IMQProducer interface

A IMQProducer object provides methods to produce and send messages to the broker. As
a shortcut, a method allows to send text or bytes messages without creating
ITextMessage or IBytesMessage object by providing the text or bytes as a parameter.

10 Habari Client for Artemis 6.4

Code example

function Send(const Destination: IDestination;

const Body: string): IMQProducer; overload;
function Send(const Destination: IDestination;

const AMessage: IMessage): IMQProducer; overload;

IMQConsumer interface

An IMQConsumer object provides methods to consume messages from the broker.

The following example is taken from the unit tests. It uses the new API to create and send
a text message to a broker queue destination, and then receives the message from this
gueue.

Source code example

Code example

procedure TNewApiTests.TestSendMessage;
var

Context: IMQContext;

Destination: IQueue;

Producer: IMQProducer;

Consumer: IMQConsumer;

TextMessage: ITextMessage;

begin
Context := Factory.CreateContext;
Destination := Context.CreateQueue (GetQueueName) ;
Producer := Context.CreateProducer;

Producer.Send (Destination, 'Hello World'):;

Consumer := Context.CreateConsumer (Destination) ;
TextMessage := Consumer.Receive (2500) as ITextMessage;

CheckEquals ('Hello World', TextMessage.Text)
Context.Close;
end;

Breaking changes in version 6.0 11

Breaking changes in version 6.0

Removed conditional synmbol HABARI_RAW_TRACE

For detailed logging of network traffic, you may use the conditional symbol
HABARI_USE_INTERCEPT.

Removed support for asynchronous message receive

The following methods ans properties are no longer available:

function CreateConsumer (const Destination: IDestination;
const MessageSelector: string; const NolLocal: Boolean;

const Messagelistener: IMessagelistener): ImessageConsumer;

IMessageConsumer = interface

function GetMessagelListener: IMessagelListener;
procedure SetMessagelistener (const Value: IMessagelListener) ;

property MessagelListener: IMessagelListener read GetMessagelListener write

SetMessageListener;

12 Habari Client for Artemis 6.4

Communication Adapters

Introduction

Habari Client for Artemis uses communication adapters as an abstraction layer for the
TCP/IP library. All connections create their own internal instance of the adapter class.

Configuration of communication adapters

No configuration is required for the communication adapters. Applications specify
communication and connection options in URL parameters or connection class properties
or connection factory settings.

Registration of communication adapter class

A communication adapter implementation can be prepared for usage by simply adding its
Delphi unit to the project.

Code example

program ClientUsingIndy;

uses
BTCommAdapterIndy, // use Internet Direct (Indy)
BTConnectionFactory, BTJMSInterfaces,
SysUtils;

Behind the scenes, the communication adapter class will register itself with the
communication adapter manager in the BTAdapterRegistry unit.

Default adapter class

Applications typically use only one of the available communication adapter classes for all
connections.

The library allows to register two or more adapter classes and switch at run-time, using
methods in the adapter registry in unit BTAdapterRegistry - this feature is mainly for tests
and demonstration purposes.

If more than one communication adapter is in the project, the first adapter class in the
list will be the default adapter class. Example:

Communication Adapters 13

Code example

program ClientUsingIndyOrSynapse;

uses

BTCommAdapterIndy, // use Internet Direct (Indy) as default adapter class
BTCommAdapterSynapse, // and register the Synapse adapter class
BTConnectionFactory, BTJMSInterfaces,

SysUtils;

The default adapter class can be changed at run-time by setting the adapter class either
by its name or by its class type.

Available communication adapters

The library includes two adapter classes for TCP/IP libraries, one for Indy (Internet Direct)
and one for Synapse.

Adapter Class Unit
TBTCommAdapterIndy BTCommAdapterIndy
TBTCommAdapterSynapse BTCommAdapterSynapse

Table 1: Communication Adapters

Limitations of the Synapse communication adapter class

« The Synapse library does not support the ConnectTimeout property in synchronous
socket operation mode, as connect timeouts are handled by the operating system.
Indy uses a background thread to abort the connect operation.?

+ Release 40 of Ararat Synapse is used for Habari Client library development and
tests. This is the last announced release, dated April 24, 2012. This release is
compatible for Delphi versions before XE4°. If you use a newer release of Ararat
Synapse, please let me know if you encounter any API incompatibilities or other
problems.

2 http://www.ararat.cz/synapse/doku.php/public:howto:connecttimeout
3 http://docwiki.embarcadero.com/RADStudio/XE4/en/Global_Variables

14 Habari Client for Artemis 6.4

The Programming Model

Habari Client libraries use a programming model which is based on message producers
and message consumers, sessions, connections and connection factories.

The basic API is the same for all library versions to allow easy migration between
supported message brokers (with the exception of broker-specific features).

Connection
Factory

Connection
Cregtes
Message Session Message
Producer Consumer
Sends to Creates Receives from
5 5
Msg

Destination

Destination

Illustration 1: Programming Model

Tutorials 15

Tutorials

Quick Start Tutorial

This tutorial provides a very simple and quick introduction to Habari Client for Artemis by
walking you through the creation of a simple "Hello World" application. Once you are done
with this tutorial, you will have a general knowledge of how to create and run Habari
applications.

This tutorial takes less than 10 minutes to complete.

Setting up the project
To create a new project:
1. Start the Delphi IDE.
In the IDE, choose File > New > VCL Forms Application — Delphi
Choose Project > Options ... to open the Project Options dialog

In the options tree on the left, select 'Delphi Compiler’

i A W N

Add the source directory of Habari Client for Artemis and the Indy source
directories to the 'Search path'

6. Choose Ok to close the Project Options dialog
7. Save the project as HelloMQ
Now the project is created and saved.

You should see the main form in the GUI designer now.

Adding code to the project

To use the Habari Client for Artemis library, you need to add the required units to the
source code.

8. Switch to Code view (F12)

9. Add the required units to the interface uses list:

Code example

uses
BTConnectionFactory,
BTJMSInterfaces,

16 Habari Client for Artemis 6.4

BTCommAdapterIndy,
// auto-generated unit references

Windows, Messages, SysUtils,

10.Compile and save the project.

11.Switch to Design view (F12), go to the Tool palette (Ctrl+Alt+P) and select
TButton, add a Button to the form.

12.Double click on the new button to jump to the Button Click handler
13.Add the following code to send the message:

Code example

procedure TForml.ButtonlClick (Sender: TObject) ;
var

Factory: IConnectionFactory;

Connection: IConnection;

Session: ISession;

Destination: IDestination;

Producer: IMessageProducer;

begin
Factory := TBTConnectionFactory.Create('stomp://localhost');
Connection := Factory.CreateConnection;

Connection.Start;

Session := Connection.CreateSession(False, amAutoAcknowledge) ;
Destination := Session.CreateQueue ('HelloMQ') ;
Producer := Session.CreateProducer (Destination) ;

Producer.Send (Session.CreateTextMessage ('Hello world!'));

Connection.Close;

end;

14.Add a second button and double click on the new button to jump to the Button Click

handler

15.Add the following code to receive and display the message:

Code example

procedure TForml.Button2Click (Sender: TObject) ;
var

Factory: IConnectionFactory;

Connection: IConnection;

Session: ISession;

Destination: IDestination;

Tutorials

Consumer: IMessageConsumer;
Msg: ITextMessage;

begin
Factory := TBTConnectionFactory.Create('stomp://localhost') ;
Connection := Factory.CreateConnection;

Connection.Start;

Session := Connection.CreateSession(False, amAutoAcknowledge) ;
Destination := Session.CreateQueue ('HelloMQ') ;
Consumer := Session.CreateConsumer (Destination) ;

Msg := Consumer.Receive (1000) as ItextMessage;

if Assigned(Msg) then
ShowMessage (Msg. Text)
else

ShowMessage ('Error: no message received');

Connection.Close;

end;

17

16.Compile and save the project

Run the demo

+ Launch the message broker

+ Start the application

« Click on Button 1 to send the message to the queue

« Click on Button 2 to receive the message and display it

You can run two instances of the application at the same time, and also on different

computers if the IP address of the message broker is used instead of localhost.

Check for memory leaks

To verify that the program does not cause memory leaks, insert a line in the project file

HelloMQ.dpr:

Code example
program HelloMQ;
uses

Forms,

Unitl in 'Unitl.pas' {Forml};

{$SR *.res}

18 Habari Client for Artemis 6.4

begin
ReportMemoryLeaksOnShutdown := True; // check for memory leaks
Application.Initialize;
Application.MainFormOnTaskbar := True;
Application.CreateForm(TForml, Forml) ;
Application.Run;

end.

Tutorial source code

The tutorial source code is included in the demo folder. It does not include a .proj file so
you still need to add the Habari and Indy source paths to the project options.

Map Message Tutorial

This tutorial provides a quick introduction to Habari Client for Artemis by walking you
through the creation of a simple map message exchange application.

This tutorial takes less than 10 minutes to complete.

Setting up the project
To create a new project:
1. Start the Delphi IDE.
In the IDE, choose File > New > VCL Forms Application — Delphi
Choose Project > Options ... to open the Project Options dialog

In the options tree on the left, select 'Delphi Compiler'

i AW N

Add the source directory of Habari source, the Habari source\optional, and the Indy
source directories to the 'Search path'

6. Choose OK to close the Project Options dialog
7. Save the project as HelloMapMessage
Now the project is created and saved.

You should see the main form in the GUI designer now.

Adding code to the project

To use the Habari Client for Artemis library, you need to add the required units to the
source code.

8. Switch to Code view (F12)

9. Add the required units to the interface uses list:

Tutorials 19

Code example

uses
BTConnectionFactory, BTJMSInterfaces, BTCommAdapterIndy, BTConnection,

BTMessageTransformerXMLMapDocument, BTSerialIntf, BTTypes,
// auto-generated unit references

Windows, Messages, SysUtils,

10.Compile and save the project.

11.Switch to Design view (F12), go to the Tool palette (Ctrl+Alt+P) and add a TMemo
and a TButton to the form.

12.Double click on the new button to jump to the Button Click handler

13.Add the following code to send the message:

Code example

procedure TForml.ButtonlClick (Sender: TObject) ;
var

Factory: IConnectionFactory;

Connection: IConnection;

Session: ISession;

Destination: IDestination;

Producer: IMessageProducer;

MapMessage: IMapMessage;

Key: string;

begin
Factory := TBTConnectionFactory.Create('stomp://localhost');
Connection := Factory.CreateConnection;

SetTransformer (Connection, TBTMessageTransformerXMLMapDocument.Create (nil)) ;

Connection.Start;

Session := Connection.CreateSession(False, amAutoAcknowledge) ;
Destination := Session.CreateQueue ('HelloMapMessage') ;
Producer := Session.CreateProducer (Destination) ;

MapMessage := Session.CreateMapMessage;

MapMessage.SetString('DateTimeToStr (Now) ', DateTimeToStr (Now)) ;
MapMessage.SetString('ParamStr(0) ', ParamStr(0));

Producer. Send (MapMessage) ;

Memol.Lines.Append('Sent:') ;
for Key in MapMessage.GetMapNames do
begin
Memol.Lines.Append(Key + '=' + MapMessage.GetString(Key)) ;

end;

20 Habari Client for Artemis 6.4

Connection.Close;

end;

14.Add a second button and double click on the new button to jump to the Button Click
handler

15.Add the following code to receive and display the message:

Code example

procedure TForml.Button2Click (Sender: TObject) ;
var
Factory: IConnectionFactory;
Connection: IConnection;
Session: ISession;
Destination: IDestination;
Consumer: IMessageConsumer;
MapMessage: IMapMessage;
Key: string;
begin
Factory := TBTConnectionFactory.Create('stomp://localhost') ;
Connection := Factory.CreateConnection;
SetTransformer (Connection, TBTMessageTransformerXMLMapDocument.Create (nil)) ;

Connection.Start;

Session := Connection.CreateSession(False, amAutoAcknowledge) ;
Destination := Session.CreateQueue ('HelloMapMessage'
+ '?transformation=' + BTSeriallIntf.TRANSFORMER ID MAP XML) ;

Consumer := Session.CreateConsumer (Destination) ;
MapMessage := Consumer.Receive(1000) as IMapMessage;

if Assigned(MapMessage) then
begin
Memol.Lines.Append ('Received: ') ;
for Key in MapMessage.GetMapNames do
begin
Memol.Lines.Append(Key + '=' + MapMessage.GetString(Key)) ;
end;

end;

Connection.Close;
end;

16.Compile and save the project

Tutorials 21

Run the demo

« Launch the message broker

- Start the application

+ Click on Button 1 to send the map message to the queue

+ Click on Button 2 to receive the map message and display it

You can run two instances of the application at the same time, and also on different
computers if the IP address of the message broker is used instead of localhost.

Map Message Conversion with Apache ActiveMQ

Note: if you send and receive map messages using the library, message brokers will
receive them as simple STOMP text messages with a special header property
"transformation"” which is set to the value JMS_MAP_XML (or JMS_MAP_JSON if you use a
JSON based map transformer class).

Most message brokers will not perform any special processing of these STOMP messages.
A notable exception is Apache ActiveMQ: if the broker receives a STOMP message with the
JMS_MAP_XML or JIMS_MAP_JSON transformation header, it will convert the message
internally to a 'native' JMS MapMessage. This allows Java clients to receive the message
sent from the Delphi application as a MapMessage without the need to parse a XML body.

Habari Client map message transformers only support string properties.

Tutorial source code

The tutorial source code is included in the demo folder. It does not include a .proj file so
you still need to add the Habari and Indy source paths to the project options.

22 Habari Client for Artemis 6.4

Connection Factory

Overview

A connection factory is an object which holds all information required for the creation of a
connection objects.

A factory instance is created and configured only once. It then may be used to create
actual connection objects when needed. For example, a worker thread may create the
connection factory once at program start-up and use it to create a new connection object
whenever a connection failure occurred.

Creation and configuration

The code example below shows a helper function which creates a connection factory, and
returns it using the interface type IConnectionFactory.

The factory will be freed automatically when there are no more references to it.

Code example

function TExample.CreateConfiguredFactory: IConnectionFactory;
var

Factory: IConnectionFactory;

begin
A e
// create an instance
A
Factory := TBTConnectionFactory.Create('user', 'password', 'stomp://localhost?

send.receipt=true') ;

/] =

// return the instance

J] = e
Result := Factory;

end;

This code example is useful for most simple client applications. However, because the
local factory variable is declared as IConnectionFactory, advanced configuration properties
in the class TBTConnectionFactory such as ClientID and SendTimeout are not accessible.

To access them, declare the local factory with the class type as shown in the next
example:

Connection Factory

Code example

function TExample.CreateConfiguredFactory: IConnectionFactory;
var

Factory: TBTConnectionFactory;
begin

A e

// create and assign to local variable

A

Factory := TBTConnectionFactory.Create;

/] =

// additional configuration

T

Factory.BrokerURL := 'broker.example.com';
Factory.UserName := 'guest';

Factory.Password := 'guest';
Factory.ClientID := 'myclientId';
Factory.SendTimeOut := 10000;

Factory.ConnectTimeOut := 10000; // Indy only

A

// return the configured factory

J e e e
Result := Factory;

end;

23

Warning: if the method signature is changed to return the class TBTConnectionFactory
instead, a memory leak will occur.

Code example

function TExample.Run;
var
F: IConnectionFactory;
C: IConnection;
begin
f] ==

// get a factory and use it to create a connection object

A e
F := CreateConfiguredFactory;

C := F.CreateConnection;

// ==
// start and use the connection

/] ==

C.Start;

24 Habari Client for Artemis 6.4

e

// close the connection

[]
C.Close;

end;

Connection URL parameters

Heart-beating Support

STOMP 1.1 introduced heart-beating, its configuration is covered in the chapter Stomp 1.2

TCP Keep-Alive (only supported with Indy)

The library supports TCP keep-alive with an optional connection URL parameter,
tcp.keepalive.

The parameter takes two arguments. On Linux, the first argument is the initial delay
before the first keep-alive, the second argument specifies the interval (both values are in
milliseconds). On the Windows platform, the values of these arguments are ignored and
the operating system uses default values for initial delay* and interval®, which can be
modified in the registry.

Code example

Factory := TBTConnectionFactory.Create('user', 'password',6 'stomp://localhost?
tcp.keepalive=1000,1000") ;

Note TCP keep-alive is currently only supported by the Indy
communication adapter

Important To enable TCP keep-alive, the project must be compiled with
the conditional symbol HABARI_TCP_KEEPALIVE

Failover Support

The Failover transport layers reconnect logic on top of the Stomp transport.®

4 http://technet.microsoft.com/en-us/library/cc957549.aspx
5 http://technet.microsoft.com/en-us/library/cc957548.aspx
6 http://activemq.apache.org/failover-transport-reference.html

Connection Factory 25

The Failover configuration syntax allows you to specify any number of composite URIs.
The Failover transport randomly chooses one of the composite URI and attempts to
establish a connection to it. If it does not succeed, a new connection is established to one
of the other URIs in the list.

Example for a failover URI:

failover: (stomp://primary:61613,stomp://secondary:61613)

Failover Transport Options

Option Name Default Description
Value
initialReconnectDelay 10 How long to wait before the first reconnect attempt
(in ms)
maxReconnectDelay 30000 The maximum amount of time we ever wait between

reconnect attempts (in ms)

backOffMultiplier 2.0 The exponent used in the exponential backoff
attempts
maxReconnectAttempts -1 -1 is default and means retry forever, 0 means don't

retry (only try connection once but no retry)

If set to > 0, then this is the maximum number of
reconnect attempts before an error is sent back to the
client

randomize true use a random algorithm to choose the the URI to use
for reconnect from the list provided

Table 2: Failover Transport Options

Example URI:

failover: (stomp://localhost:61616,stomp://remotehost:61616) ?
initialReconnectDelay=100&maxReconnectAttempts=10

Code example

Factory := TBTConnectionFactory.Create('failover: (stomp://primary:61616,stomp://
localhost:61613) ?maxReconnectAttempts=3&randomize=false') do

try

26 Habari Client for Artemis 6.4

Conn := Factory.CreateConnection;
Conn.Start;

Conn.Stop;
finally

Conn.Close;
end;

Receipt Support

The STOMP standard supports receipt messages since version 1.0:

"Any client frame other than CONNECT may specify a receipt header with an
arbitrary value. This will cause the server to acknowledge receipt of the frame
with a RECEIPT frame which contains the value of this header as the value of
the receipt-id header in the RECEIPT packet."’®

With Habari Client for Artemis, client applications may configure receipt headers for the
frame types listed below.

After the STOMP frame has been sent to the broker, the client library waits for the
RECEIPT frame for a defined time, which may be configured per frame type. If the broker
does not send a receipt within the time-out interval, the client library will raise an

exception. If the client receives a receipt with the wrong receipt-id header, it will raise an
exception.

Receipt Support Parameters

STOMP frame Parameter Example URL

SUBSCRIBE subscribe.receipt stomp://localhost?subscribe.receipt=true

UNSUBSCRIBE subscribe.receipt stomp://localhost?
unsubscribe.receipt=true

SEND send.receipt stomp://localhost?send.receipt=true

DISCONNECT disconnect.receipt stomp://localhost?disconnect.receipt=tru

SUBSCRIBE Receipt

To erquest server reseipts for SUBSCRIBE frames, use the optional connection URL
parameter, subscribe.receipt.

7 https://stomp.github.io/stomp-specification-1.0.html
8 https://stomp.github.io/stomp-specification-1.1.html#Header_receipt
9 https://stomp.github.io/stomp-specification-1.2.html#Header_receipt

Connection Factory 27

Code example

Factory := TBTConnectionFactory.Create('user', 'password', 'stomp://localhost?
subscribe.receipt=true') ;

If the broker does not send a receipt within the time-out interval, the client library will
raise an exception.

UNSUBSCRIBE Receipt

To erquest server reseipts for UNSUBSCRIBE frames, use the optional connection URL
parameter, unsubscribe.receipt.

Code example

Factory := TBTConnectionFactory.Create('user',6 'password', 'stomp://localhost?
unsubscribe.receipt=true') ;

If the broker does not send a receipt within the time-out interval, the client library will
raise an exception.

SEND Receipt

To erquest server reseipts for SEND frames, use the optional connection URL parameter,
send.receipt.

Code example

Factory := TBTConnectionFactory.Create('user', 'password', 'stomp://localhost?
send.receipt=true') ;

If the broker does not send a receipt within the time-out interval, the client library will
raise an exception.

Note: for additional reliability, the client can use transactional send
(see section "Transacted Sessions").

DISCONNECT Receipt

To request server receipts for DISCONNECT frames, use the optional connection URL
parameter, disconnect.receipt.

28 Habari Client for Artemis 6.4

Code example

Factory := TBTConnectionFactory.Create('user', 'password', 'stomp://localhost?
disconnect.receipt=true') ;

Without this parameter, the client will disconnect the socket connection immediately after
sending the DISCONNECT frame to the broker.

With disconnect.receipt=true, the client will send the DISCONNECT frame and then wait
for the broker receipt frame. If the broker does not answer, the client library will raise an
exception. The client application should treat its messages as undelivered.

Note: for additional reliability, the client can use transactional send
(see section "Transacted Sessions"), and message receipts (see
section "SEND Receipt").

Connections and Sessions 29

Connections and Sessions

Connections use Stomp 1.2 by default

Connections use Stomp 1.2 by default since
- Habari Client for Apache ActiveMQ 5.1
« Habari Client for Apache Artemis 5.1
« Habari Client for RabbitMQ 5.1
With OpenMQ), the library still uses Stomp 1.0.

Stomp version may be specified by connection URL parameters. The default protocol
version is defined in the BTBrokerConsts unit.

Step-by-Step Example

Overview

This example will send a single message to a destination queue (ExampleQueue).*°

Add required units

Three units are required for this example
e a communication adapter unit (e. g. BTCommAdapterIndy)
e a connection factory unit (BTConnectionFactory)
e the unit containing the interface declarations (BTIJMSInterfaces)

The SysUtils unit is necessary for the exception handling.

Code example

program SendOneMessage;
{SAPPTYPE CONSOLE}

uses

10 Compatibility note: non-existing queues are created automatically by the broker — with the
exception of Artemis and HornetQ which require them to be configured before usage

30 Habari Client for Artemis 6.4

BTCommAdapterIndy,
BTConnectionFactory,
BTJIMSInterfaces,
SysUtils;

Creating a new Connection

New connections are created by calling the CreateConnection method of a connection
factory.

Code example

var
Factory: IConnectionFactory;
Connection: IConnection;

begin

Factory := TBTConnectionFactory.Create('user', 'password',6 'stomp://localhost');
Connection := Factory.CreateConnection;

« For connection factory creation and configuration options please see chapter
“Creation and configuration”.

« Since IConnection is an interface type, the connection instance will be destroyed
automatically if there are no more references to it in the program.

Connection URL Parameters

Connection URL parameters are documented in chapter "Connection URL parameters" and
in chapter "Stomp 1.2".

Creating a Session

To create the communication session,
e declare a variable of type ISession

e use the helper method createSession of the connection, and specify the
acknowledgment mode

Please check the API documentation for the different session types and acknowledgement
modes.

Since Isession is an interface type, the session instance will be destroyed automatically if
there are no more references to it in the program.

Connections and Sessions 31

Code example

Session := Connection.CreateSession(False, amAutoAcknowledge) ;

Using the Session

The Session variable is ready to use now. Destinations, producers and consumers will be
covered in the next chapters.

Code example

Destination := Session.CreateQueue ('ExampleQueue') ;
Producer := Session.CreateProducer (Destination) ;
Producer.Send (Session.CreateTextMessage ('This is a test message'));

Closing a Connection

Finally, the application closes the connection. The client will disconnect from the message
broker. Closing a connection also implicitly closes all open sessions.

Code example

finally
Connection.Close;
end;
end.

Note: Close will be called automatically if the connection is destroyed.
But because unclosed connections use resources, Close should
be called when the connection is no longer needed. When
logging is enabled, the connection class will also log a message
when a connection is destroyed without calling Close.

Session types overview

The table below shows the supported parameter combinations for the
Connection.CreateSession method and their effect on the session transaction and
acknowledgment features.

32 Habari Client for Artemis 6.4

Parameters

CreateSession(False, amAutoAcknowledge)

CreateSession(False, amClientAcknowledge)

CreateSession(False, amClientIndividual)
CreateSession(True, amAutoAcknowledge)

CreateSession(True, amClientAcknowledge)

CreateSession(True, amClientIndividual)

CreateSession(True, amTransactional)

Table 3: Session creation parameters

® - not supported by ActiveMQ Artemis

Client MUST
acknowledge
message
receipt!!

No

Yes (cumulative
effect)

Yes
No

Yes (cumulative
effect)

Yes

No

Transaction
support for

STOMP

Send Ack Version

v -
v v ®
v v @
v -

1.0

1.0

1.2
1.0

1.0

1.2

1.0

Transacted Sessions

A session may be specified as transacted. Each transacted session supports a single series

of transactions.

Each transaction groups a set of message sends into an atomic unit of work.

A transaction is completed using either its session's Commit method or its session's
Rollback method. The completion of a session's current transaction automatically begins
the next. The result is that a transacted session always has a current transaction within

which its work is done.

Create a transacted session

To create a transacted session, set the parameter of CreateSession to amTransactional as

shown in the code example

Code example

Session := Connection.CreateSession(amTransactional) ;

11 https://stomp.github.io/stomp-specification-1.2.html#SUBSCRIBE_ack_Header

Connections and Sessions 33

or (using the older API version)

Code example

Session := Connection.CreateSession (True, amTransactional)

This code will automatically start a new transaction for this session.

Send messages

Now send messages using the transacted session.

Code example

Destination := Session.CreateQueue ('testqueue') ;
Producer := Session.CreateProducer (Destination) ;

Producer.Send (Session.CreateTextMessage ('This is a test message'));

Committing a transaction

If your client code has successfully sent its messages, the transaction must be committed
to make the messages visible on the destination.

Code example

// send messages ...

finally

// commit all messages
Session.Commit;

end;

Note: committing a transaction automatically starts a new transaction

Rolling back a transaction

If your client code runs wants to undo the sending of its messages, the transaction may
be rolled back, and the messages will not become visible on the destination.

34 Habari Client for Artemis 6.4

Code example

// send messages ...
except

// error!
Session.Rollback;

end;

Note: rolling back a transaction automatically starts a new
transaction. A transacted session will be rolled back
automatically if the connection is closed.

Transacted message acknowledgement

Some library versions (see table "Communication Adapters"™ on page 13) support
transactions also for the acknowledgement of received messages.

When a transaction is rolled back or the connection is closed without a commit, messages
which have been acknowledged after the transaction start will return to unacknowledged
state.

Code example

// receive in a transacted session

Session := Connection.CreateSession (True, amClientAcknowledge) ;
Queue := Session.CreateQueue (GetQueueName) ;

Consumer := Session.CreateConsumer (Queue) ;

Msg := Consumer.Receive (1000) ;

// process the message

// acknowledge the message
Msg.Acknowledge;

// in case of errors, roll back all acknowledgements
Session.Rollback;

This is an experimental feature. It requires the STOMP 1.2 communication protocol.

Destinations 35

Destinations

Introduction

The API supports two models:*?
1. point-to-point or queuing model
2. publish and subscribe model

In the point-to-point or queuing model, a producer posts messages to a particular queue
and a consumer reads messages from the queue. Here, the producer knows the
destination of the message and posts the message directly to the consumer's queue. It is
characterized by following:

e Only one consumer will get the message

e The producer does not have to be running at the time the receiver consumes the
message, nor does the receiver need to be running at the time the message is sent

e Every message successfully processed is acknowledged by the receiver

The publish/subscribe model supports publishing messages to a particular message topic.
Zero or more subscribers may register interest in receiving messages on a particular
message topic. In this model, neither the publisher nor the subscriber know about each
other. A good metaphor for it is anonymous bulletin board. The following are
characteristics of this model:

e Multiple consumers can get the message

e There is a timing dependency between publishers and subscribers. The publisher
has to create a subscription in order for clients to be able to subscribe. The
subscriber has to remain continuously active to receive messages, unless it has
established a durable subscription. In that case, messages published while the
subscriber is not connected will be redistributed whenever it reconnects.

Create a new Destination

Queues

A gueue can be created using the CreateQueue method of the Session.

Code example

12 Java Message Service. (2007, November 21). In Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/wiki/Java_Message_Service

http://en.wikipedia.org/wiki/Java_Message_Service

36 Habari Client for Artemis 6.4

Destination := Session.CreateQueue('foo');
Consumer := Session.CreateConsumer (Destination) ;

The queue can then be used to send or receive messages using implementations of the
IMessageProducer and IMessageConsumer interfaces. (See next chapter for an example)

Topics
A topic can be created using the CreateTopic method of the Session.
Code example

Destination := Session.CreateTopic('bar');
Consumer := Session.CreateConsumer (Destination) ;

The topic can then be used to send or receive messages using implementations of the
IMessageProducer and IMessageConsumer interfaces. (See next chapter for an example).

Producer and Consumer 37

Producer and Consumer

Message Producer

A client uses a MessageProducer object to send messages to a destination. A
MessageProducer object is created by passing a Destination object to a message-producer
creation method supplied by a session.

Code example

Destination := Session.CreateQueue('foo');
Producer := Session.CreateProducer (Destination) ;
Producer.Send (Session.CreateTextMessage ('Test message')) ;

A client can specify a default delivery mode, priority, and time to live for messages sent
by a message producer. It can also specify the delivery mode, priority, and time to live for
an individual message.

Persistent messages

The delivery mode for outgoing messages may be set to persistent in one of two ways.
From the docs for TBTMessageProducer: "A client can specify a default delivery mode,
priority, and time to live for messages sent by a message producer. It can also specify the
delivery mode, priority, and time to live for an individual message."

Setting the default delivery mode
Code example

Destination := Session.CreateQueue('foo');

Producer := Session.CreateProducer (Destination) ;
Producer.DeliveryMode := dmPersistent;

Producer.Send (Session.CreateTextMessage ('Test message')) ;

Setting the delivery mode for an individual message
Code example

Destination := Session.CreateQueue('foo');

38 Habari Client for Artemis 6.4

Producer := Session.CreateProducer (Destination) ;
Producer.Send (Session.CreateTextMessage ('Test message'), dmPersistent,
BTBrokerConsts.DEFAULT PRIORITY, O0);

Message Consumer

A client uses a MessageConsumer object to receive messages from a destination. A
MessageConsumer object is created by passing a Destination object to a message-
consumer creation method supplied by a session.

Code example

Destination := Session.CreateQueue('foo');
Consumer := Session.CreateConsumer (Destination) ;

Message Selector

A message consumer can be created with a message selector*?.

A message selector allows the client to restrict the messages delivered to the message
consumer to those that match the selector.

Synchronous Receive

A MessageConsumer offers a Receive method which can be used to consume exactly one
message at a time.

Code example

while I < EXPECTED do
begin
TextMessage := Consumer.Receive (1000) as ITextMessage;
if Assigned (TextMessage) then
begin
Inc(I);
TextMessage.Acknowledge;
L.Info(Format('%d %s', [I, TextMessage.Text]));

end;

13 The RabbitMQ message broker does not support message selectors

Producer and Consumer 39

end;

Receive and ReceiveNoWait
There are three different methods for synchronous receive:

Receive The Receive method with no arguments will block (wait until a
message is available).

Receive(TimeOut) The Receive method with a timeout parameter will wait for the
given time in milliseconds. If no message arrived, it will return
nil.

ReceiveNoWait The ReceiveNoWait method will return immediately. If no
message arrived, it will return nil.

40 Habari Client for Artemis 6.4

Durable Subscriptions

Description

If a client needs to receive all the messages published on a topic, including the ones
published while the subscriber is inactive, it uses a durable TopicSubscriber.

The message broker retains a record of this durable subscription and insures that all
messages from the topic's publishers are retained until they are acknowledged by this
durable subscriber or they have expired.**

The combination of the clientld and durable subscriber name uniquely identifies the
durable topic subscription.

After you restart your program and re-subscribe, the broker will know which messages
you need that were published while you were away.

Creation

The Session interface contains the CreateDurableSubscriber method which creates a
durable subscriber to the specified topic.

A durable subscriber MessageConsumer is created with a unique clientID and durable
subscriber name.

Only one thread can be actively consuming from a given logical topic subscriber.

14 http://download.oracle.com/javaee/5/api/javax/jms/TopicSession.html

Temporary Queues 41

Temporary Queues

Introduction

“Temporary destinations (temporary queues or temporary topics) are
proposed as a lightweight alternative in a scalable system
architecture that could be used as unique destinations for replies.
Such destinations have a scope limited to the connection that created
it, and are removed on the server side as soon as the connection is

closed.” (“Designing Messaging Applications with Temporary Queues”, by Thakur
Thribhuvan *°)

Library Support

Temporary destinations are supported by
ActiveMQ
OpenMQ
RabbitMQ

Resource Management

The session should be closed as soon as processing is completed so that
TemporaryQueues will be deleted on the server side.

15 http://onjava.com/pub/a/onjava/2007/04/10/designing-messaging-applications-with-
temporary-queues.html

42 Habari Client for Artemis 6.4

Message Options

Standard Properties

The Apache ActiveMQ message broker supports some JMS standard properties in the
STOMP adapter. These properties are based on the JMS specification of the Message

interface.®

Habari Client libraries for other message brokers may support a subset of these standard

properties.
Note:

If your application makes use of these properties, your
application depends on a broker-specific feature which is not
guaranteed to be available in the STOMP adapter of other
message brokers

Properties for outgoing messages

JMSCorrelationID
JMSExpiration
JMSDeliveryMode
JMSPriority*®

JMSReplyTo

The correlation ID for the message.

The message's expiration value.

Whether or not the message is persistent.’
The message priority level.

The Destination object to which a reply to this message
should be sent.

Properties for incoming messages

JMSCorrelationID
JMSExpiration
JMSDeliveryMode
JMSPriority

JMSTimestamp

The correlation ID for the message.

The message's expiration value.

Whether or not the message is persistent.
The message priority level.

The timestamp the broker added to the message.

16 http://download.oracle.com/javaee/5/api/javax/jms/Message.html
17 For sending persistent messages please see documentation for IMessageProducer
18 Clients set the JMSPriority not directly, but either on the producer or as a parameter in the

Send method

Message Options 43

JMSMessageld The message ID which is set by the provider.

JMSReplyTo The Destination object to which a reply to this message
should be sent.

Reserved property names

Some headers names are defined by the Stomp specifications, and by broker-specific
extensions of the Stomp protocol. These reserved Stomp header names can not be used
as names for user defined properties.

Note The client library will raise an Exception if the application tries
to send a message with a reserved property name.

Examples
e login
e passcode
e transaction
e session
e message
e destination
e id
e ack
e selector
e type
e content-length
e content-type
e correlation-id
® expires
e persistent
e priority
e reply-to
e message-id
e timestamp
e transformation
e client-id

e redelivered

44 Habari Client for Artemis 6.4

Prefix for custom headers

A common practice to avoid name collisions is using a prefix for your own properties
(example: x-type instead of type).

Selectors

Selectors are a way of attaching a filter to a subscription to perform content based
routing. For more documentation on the detail of selectors see the reference on
javax.jmx.Message™.

Supported message brokers

Message selectors are supported by
« Habari Client for ActiveMQ
Habari Client for Artemis
« Habari Client for OpenMQ

Code example

Consumer := Session.CreateConsumer (Destination, 'type=''car'' and color=''blue''');

All supported brokers allow supports string type properties and operations in selectors.
ActiveMQ also allows integer properties and operations in selectors (see special note??).

19 http://docs.oracle.com/javaee/5/api/javax/jms/Message.html
20 http://activemq.apache.org/selectors.html

Object Messages 45

Object Messages

Introduction

Object Serialization

Object serialization is the process of saving an object's state to a sequence of bytes, as
well as the process of rebuilding those bytes into a live object at some future time.? In
messaging applications, object serialization is required to transfer objects between clients,
but also to store objects on the broker if they are declared persistent.

Message Transformers

Style Message Type Library Unit

XML ObjectMessage OmnixXML BTMessageTransformerXMLOmni

XML ObjectMessage NativeXml BTMessageTransformerXMLNative

XML MapMessage OmniXML BTMessageTransformerXMLMapOmni
XML MapMessage NativeXml BTMessageTransformerXMLMapNative
XML MapMessage IDocument BTMessageTransformerXMLMapDocument

JSON MapMessage JsonDataObjects BTMessageTransformerJSONDataObjects
JSON ObjectMessage SuperObject BTMessageTransformerJSONSuperObject

JSON MapMessage SuperObject BTMessageTransformerJSONMapSuperObje
ct

Table 4: Message Transformer Implementations

Memory Management
Outgoing Objects

The message transformer will not free objects which have been sent. To release the
memory, the application has to explicitly free them when they are no longer used.

21 http://www.oracle.com/technetwork/articles/java/javaserial-1536170.html

46 Habari Client for Artemis 6.4

Incoming Objects

The message transformer will create an object instance when an object message has been
received. To avoid memory leaks, the application must free this instance when it is no
longer in use.

Assign a Message Transformer

To insert an object decoder / encoder in the message processing chain, create a message
transformer instance and assign it to the connection's MessageTransformer property.

The constructor of message transformers for object exchange takes one argument, which
is the class of the serialized object. In this example, SamplePojo is the class.

Code example

Connection: IConnection;

with (Connection as IMessageTransfomerSupport) do
begin

MessageTransformer := TBTMessageTransformerXMLOmni.Create (SamplePojo) ;
end;

Connection.Start;

You can also use the helper procedure SetTransformer in unit BTConnection:

Code example

Connection: IConnection;
SetTransformer (Connection, TBTMessageTransformerXMLOmni.Create (SamplePojo)) ;

Connection.Start;

Create and Send an ObjectMessage

1. create a IObjectMessage instance using ISession#CreateObjectMessage

2. send the object message to the broker using IMessageProducer#Send

Code example

Object Messages

ObjectMessage := Session.CreateObjectMessage (Instance) ;
Producer. Send (ObjectMessage) ;

47

Complete Example using NativeXml

From ObjectExchangeTests.pas.
Send:

Code example

procedure TObExTestCase.TestXMLNative;
var
ObjectMessage: IObjectMessage;
Obj: SamplePojo;
begin
// send
Connection := TBTConnection.MakeConnection;
try

SetTransformer (Connection, TBTMessageTransformerXMLNative.Create (SamplePojo)) ;

Connection.Start;

Session := Connection.CreateSession(False, amAutoAcknowledge) ;
Destination := Session.CreateQueue ('TOOL.OBJECT.XML') ;
Producer := Session.CreateProducer (Destination) ;
Obj := SamplePojo.Create;
try

Obj.messageText := 'test';

Obj.messageNo := 0;

ObjectMessage := Session.CreateObjectMessage (Obj) ;

ObjectMessage.SetStringProperty (SH_TRANSFORMATION + '-custom',

TRANSFORMER ID OBJECT XML); // required for "Delphi Only" object exchange

Producer. Send (ObjectMessage) ;
finally
Obj.Free;
end;
finally
Connection.Close;
end;

Receive:

Code example

Connection := TBTConnection.MakeConnection;
try

48 Habari Client for Artemis 6.4

SetTransformer (Connection, TBTMessageTransformerXMLNative.Create (SamplePojo)) ;
Connection.Start;
Session := Connection.CreateSession(False, amClientAcknowledge) ;
Destination := Session.CreateQueue ('TOOL.OBJECT.XML') ;
Consumer := Session.CreateConsumer (Destination) ;
ObjectMessage := Consumer.Receive (1000) as IObjectMessage;
if Assigned(ObjectMessage) then
begin
ObjectMessage.Acknowledge;
Obj := ObjectMessage.GetObject as SamplePojo;
try
CheckEquals ('test', Obj.messageText)
CheckEquals (0, Obj.messageNo) ;
finally
Obj.Free;
end;
end;
finally
Connection.Close;
end;
end;

Stomp 1.2 49

Stomp 1.2

Connection configuration

A connection string can use additional URL parameters to configure Stomp version 1.1 and
1.2

All Parameters are case sensitive.

Parameters can be omitted to use the default value.

Switch Description Default
connect.accept- Supported Stomp versions in ascending order Broker
version?? specific, see

below
connect.host® The name of a virtual host that the client Server URI

wishes to connect to. It is recommended
clients set this to the host name that the socket
was established against, or to any name of their
choosing. If this header does not match a known
virtual host, servers supporting virtual hosting
MAY select a default virtual host or reject the
connection.

connect.heart-beat*® Heart beat (outgoing, incoming) 0,0

Default Stomp version (broker-specific)?®

If the connection URL does not contain the connect.accept-version parameter, the client
library will add an accept-version header to the CONNECT frame with the value defined in
the SH_DEFAULT_STOMP_VERSION constant in the BTBrokerConsts unit.

Default Stomp version

ActiveMQ Artemis OpenMQ RabbitMQ

1.2 1.2 1.0 1.2

23 http://stomp.github.com//stomp-specification-1.2.htmI#CONNECT or STOMP_Frame
24 http://stomp.github.com//stomp-specification-1.2.html#Heart-beatin
25Since version 5.1 (2017.06)

http://stomp.github.com//stomp-specification-1.2.html#Heart-beating
http://stomp.github.com//stomp-specification-1.2.html#CONNECT_or_STOMP_Frame
http://stomp.github.com//stomp-specification-1.2.html#protocol_negotiation

50 Habari Client for Artemis 6.4

Connection Factory Code Example:

Code example

Factory := TBTConnectionFactory.Create (
'stomp://localhost:61l613?connect.accept-version=1.2&connect.heart-beat=1000,0") ;

This example creates a connection factory with these connection settings

host: localhost
port: 61613
accept-version: 1.2
heart-beat: 1000,0

« virtual host is localhost
- the client requests Stomp 1.2 protocol

« client heart beat interval is 1000 milliseconds, no server heart beat signals

Specification

For details see the Stomp specification pages:

http://stomp.github.com//stomp-specification-1.1.html

Sending heart-beat signals

A client can use the SendHeartbeat method of the connection object to send a heart-
beat byte (newline 0x0A).

SendHeartbeat is a method of the IHeartbeat interface, which is declared in the
BTSessionIntf unit. A cast of the IConnection object is required to access this method.

Code example

(Connection as IHeartbeat) .SendHeartbeat;

http://stomp.github.com//stomp-specification-1.2.html
http://stomp.github.com//stomp-specification-1.1.html

Stomp 1.2 51

Notes:

- the client application code is responsible for sending a heartbeat message within
the maximum interval which was specified in the connect parameter - the Habari
Client library does not send heart-beats automatically

+ client messages which are sent after the heart-beat interval expires may be lost

Checking for incoming heartbeats

The Habari client library stores a time-stamp of the last incoming data. If the time which
elapsed since this time-stamp is greater than two times the heart-bet interval, calling
CheckHeartbeat will raise an exception of type EBTStompServerHeartbeatMissing.

Code example

(Connection as IHeartbeat) .CheckHeartbeat;

Notes:

- the method raises an exception if the connection does not use server-side heart-
beating

« the method only checks the time elapsed since the last heart-beat, it does not try
to read any data from the connection

Reading server-side heartbeats

If the client never needs to consume any messages, but still needs to check for server-
side heartbeats, it can use the ReceiveHeartbeat method of the connection object.

This method takes one argument, TimeOut.

The function returns True if it found at least one heart-beat signal on the connection.

Calling ReceiveHeartbeat is only useful for applications which never call Receive, to check
if the server is still healthy, and to consume the pending heart-beat signals from the
connection.

If the client reads messages (using Consumer.Receive), calling ReceiveHeartbeat is not
required.

52 Habari Client for Artemis 6.4

Example Applications

Directory

Description

common
common-consumertool
common-consumertool-fpc
common-producertool
common-producertool-fpc
common-producertool-ssl
common-tests
common-tests-fpc
delphichat

heartbeat-server

performance

reconnect

rpc

textmessage
throughput
throughput-fpc
transactions
tutoriall

tutorial2

Shared units (see below)

Receive messages from broker

Free Pascal version of ConsumerTool

Send messages to broker

Free Pascal version of producertool

Send messages to broker with SSL connection
DUnit tests

FPCUnit tests

Simple chat client (Delphi 2009)

Uses server-side heart-beating to check the
connection / server health %®

Multi-threaded performance test application (Delphi
2009)

Send messages and reconnect on connection failure
Use temporary queues to implement request/response
style communication (not supported on all message
brokers®’)

Simple text message example

Produces and consumes messages continuously

Free Pascal version of throughput

Transaction example

Tutorial one

Tutorial two

Table 5: Example Applications (in alphabetic order)

26 Requires STOMP 1.2; not supported by OpenMQ
27 Not available with ActiveMQ Artemis and HornetQ message broker

Example Applications 53

Shared units for demo projects

The directory demo/common contains shared units:
« connection configuration form
« command line parameter support class

+ LoggingHelper example unit (see “Logging with SLF4P” on page 64)

Broker URL

User

Password

Connect timeout

Send timeout

| Test connection

Illustration 2: Connection configuration dialog
example

54 Habari Client for Artemis 6.4

ConsumerTool

The ConsumerTool demo may be used to receive messages from a queue or topic. This
example application is configurable by command line parameters, all are optional.

Parameter
AckMode

ClientId

ConsumerName

Durable
MaximumMessages
Password
PauseBeforeShutDown

ReceiveTimeOut

SleepTime
Subject
Topic
Transacted
URL

User

Verbose

Default Value

Description

CLIENT_ACKNOWLEDGE Acknowledgment mode, possible values are:

Habari

false
10

false

0
TOOL.DEFAULT
false

false

localhost

true

Table 6: ConsumerTool Command Line Options

CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE
or SESSION_TRANSACTED

Client Id for durable subscriber

name of the message consumer - for durable
subscriber

true: use a durable subscriber
expected number of messages
Password

true: wait for key press

consume messages while they continue to be
delivered within the given time out

time to sleep after receive
queue or topic name

true: topic false: queue
true: transacted session
server url

user name

verbose output

Example Applications 55

© | CAUsers\m)\Desktop\Sandbox\Habari Client libraries\Habari RabbitMQ\demo\c... ~ = "

abari Client for RabhitMQ 1.9 (c> 2811-2813 Michael Justin

onnecting to URL: stomp:~/-localhost:61613

onsuming gueue: ExampleQueue

ging a non—durable subscription

Je are abhout to wait wntil consume: 180 message(s> then we will shutdown

szage: sent A8 .91 .26014 18:35:39 S

Heszage: sent : @AB.A1.26814 168:35:39 S
Mezzage: zsent A8 .91 .2814 18:-:35:39 I
Heszage: sent A8 .91 .20014 17:11:28 S
Message: sent B8 .91 .2814 17:-11:21 I
Heszage: sent A8 .91 .26014 17:11:21 S
MHeszage: sent A8 .01 .26014 17:11:21 S
Heszage: sent A8 .91 .26014 17:11:21 S
Heszage: sent A8 .91 .26014 17:11:21 S
Message: sent 88 .91 .2814 17:-11:21 I

losing connection

O LA bl B = B D20 =]

Illustration 3: ConsumerTool demo application

Examples

Receive 1000 messages from local broker

ConsumerTool --MaximumMessages=1000

Receive 10 messages from local broker and wait for any key

ConsumerTool --PauseBeforeShutDown

Use a transacted session to receive 10,000 messages from local broker

ConsumerTool --MaximumMessages=10000 --Transacted --AckMode=SESSION TRANSACTED

56 Habari Client for Artemis 6.4

ProducerTool

The ProducerTool demo can be used to send messages to the broker. It is configurable by
command line parameters, all are optional.

‘ Parameter ‘ Default ‘ Description

MessageCount 10 Number of messages
MessageSize 255 Length of a message in bytes
Persistent false Delivery mode 'persistent’
SleepTime 0 Pause between messages in milliseconds
Subject TOOL.DEFAULT Destination name
TimeTolLive 0 Message expiration time
Topic false Destination is a topic
Transacted false Use a transaction

URL localhost Message broker URL
Verbose true Verbose output

User User name

Password Password

Table 7: ProducerTool Command Line Options

i Ch\Users\mj\Desktop\Sandbox\Habari Client libraries\Habari RabbitMQ\demao\c...

abari Client for RabhitMQ 1.9 (c> 2811-2813 Michael Justin
onnecting to URL: stomp:~rlocalhost:61613
ublizhing a Message with size 255 to gueune: ExampleQueue
sing non—persistent messages
publizh @ ns
Heszage: @ sent
mezzage: Message: 1 sent
mezzage: Message: 2 sent
message: Message: 3 sent
mezzage: Message: 4 sent
message: Message: E sent
7
]
7

18.681.26814 18:47:34
18.81.2814 18:4%:384
18.681.26814 18:47:3@
18.81.2814 18:=4%:38
18.681.26814 18:47:3@
18.681.26814 18:47:34
18.681.26814 18:47:3@
18.681.26814 18:47:3@
18.81.26814 18:4%:38
18.61.26814 16:47:38

mezzage: Message: sent
sent
sent
sent

mezzage: Messzage:
message: Message:
mezzage: Messzage:

OO0
Lo als s e e s s o ol

Illustration 4: ProducerTool demo application

Examples

Send 10,000 messages to the queue TOOL.DEFAULT on the local broker

Example Applications 57

ProducerTool —--MessageCount 10000

Send 10 messages to the topic ExampleTopic on the local broker

ProducerTool —--Topic —-Subject=ExampleTopic

58 Habari Client for Artemis 6.4

Performance test

The performance test application provides a GUI for multi-threaded sending and receiving
of messages.

« A broker configuration dialog can be invoked by clicking the URL field
+ The communication library (Indy or Synapse) can be selected

« Number and length of messages and thread number can be adjusted using the
sliders

For every thread a message queue with the name ExampleQueue.<n> will be used.

E?- Habari Client for RabbitM 5.1.0 performance test application = || = | £

Broker address [click to configure)

|st0mp:.-’r'localhost
Commmurication Library

|TBT Commédapterlndy j

Mumber of messages to send (1000 - 10000
[|

Payload length [10 - 2000 bptes)
-

Mumber of threads (1 - 20);
—
Y

Create 2 sender and receiver threads tor 2000
messages each (payload 110 bytes)

2000 messages sent to queue Examplelueue.1 -
2000 meszages sent to queue Examplefusue. 0

2000 messages received from queue Examplelusus.0

2000 messages received from quele Examplelueue 1

15625 msgs/s

RabbitMQ/3.6.10

Illustration 5: Performance Test Application

Habari Client for Artemis 5.1 includes an enhanced performance test application, which
optionally collects message rates of multiple test runs and displays the sample median.
Shown above is an example for a client configuration:

Example Applications 59

« 21 test runs (triggered by a shift-click on the test button)

« 2000 messages per thread

« 210 bytes payload

« two producer threads, two consumer threads
To start the long-running tests, shift-click on the run button. Taking all test samples takes
around ten seconds.

60 Habari Client for Artemis 6.4

Throughput test

This example application is configurable by command line parameters, all are optional.

Parameter Default Value Description
Password (broker-specific) Password
Subject ExampleTopic Topic hame
URL (broker-specific) Connection URL
User (broker-specific) User name

Table 8: Throughput Test Tool Command Line Options

Examples

Use remote broker 'mybroker' and specify user and password

tptest --url=stomp://mybroker --user=testl --password=secret

| CAUsers\m)\Desktop\Sandbox\Habari Client libraries\Habari Apollo\target\dem...

abari Client for Apolleo 1.6 <c> 2088-2013 Michael Justin

onnecting to URL: stomp:~/-localhost:61613

onsuming: ExampleTopic
Ctrl+C to stop
trxsrx 2921312152 14562-.6857 msgsssec ¢ 68-165 microsecssmsgl
txsrx 4813623454 9981.-5832 mzgzssec (108-171 microsecs msgl
txsrx 4969333786 82315596 nmsgsssec (121-178 microsecssmegl
txrsrx 59225742738 73585387 nmsgsrssec (135188 microsecs/msgl
txsrx 7017354674 6280-5438 nsgsssec (143-183 microsecssmegl
txsrx 8107665864 67125457 nsgsssec (148-183 microsecss/msgl
txsrx 7474976807 67065436 mzgzsssec (147183 microsecssmsgl
txsrx 1082941.-874928 63815424 msgsssec (156-184 microsecss/msgl

Illustration 6: Throughput test tool output

Unit Tests 61

Unit Tests

Introduction

Habari Client libraries include DUnit and FPCUnit tests. They require the classic DUnit
framework (included in Delphi 2009) or FPCUnit (included in Lazarus 2.6).

The test projects are installed in the common-tests and common-tests-fpc folders.

Test project configuration

Logging

To switch on SLF4P logging, add the conditional symbol HABARI_LOGGING (see chapter
‘Logging with SLF4P") and rebuild the project. Set the DEFAULT_LOG_LEVEL constant in
unit TestHelper to a valid SLF4P level.

Raw message logging

To switch on raw logging, add the conditional symbol HABARI_RAW_TRACE and rebuild
the project. The project has the {$APPTYPE CONSOLE} flag, which will cause a console
window to open.

Optional units

To switch on tests for optional units (object message exchange), add the conditional
symbol TEST_OPTIONAL_UNITS and rebuild the project.

Synapse communication adapter

To switch from Indy to Synapse for the tests, add the conditional symbol
HABARI_TEST_SYNAPSE and rebuild the project.

Test units

The common-tests folder contains these units

62 Habari Client for Artemis 6.4

Test setup and test case base classes

TestHelper Main test set-up and utility unit, contains no tests
HabariTestCase Test case base classes used for for most tests
Unit tests

ApiTests Tests Habari Client core API methods - part 1
BasicTests Tests Habari Client core API methods - part 2

BrokerExtensionsTests Tests broker-specific features and extensions of the STOMP
protocol

HabariExtensionsTests Tests non-standard features provided by the Habari Client library
HabariTypesTests Tests internal data types

ObjectExchangeTests?® Tests object message exchange (for Delphi DUnit only)
Stomp12Tests Tests features introduced with version 1.2 of the STOMP standard

StubServerTests Tests using a simple local Stomp server

Free Pascal specific test units are in the folder common-tests-fpc

Test execution

Requirements

The test projects require a message broker running on the local system, which accepts
STOMP connections on the default port, with the default user credentials. User name and
password for the default user are defined in unit BTBrokerConsts.

Test destinations

Most tests create a test-specific destination (queue or a topic) to reduce the risk of side
effects.

The name of the destination is the combination of the test class name and the unit test
name.

Note: the unit tests will not clean up or remove these destination objects after usage.

28only added to the test suite if TEST_OPTIONAL_UNITS is defined

Unit Tests 63

STOMP 1.2

Since Habari Client for Artemis 5.0, the unit test use STOMP 1.2 for connections.

64 Habari Client for Artemis 6.4

Logging with SLF4P

Introduction

Habari Client libraries include the free open source logging framework SL4FP as an
optional dependency.

SLF4P is available at https://github.com/michaellustin/sIf4p

IDE and project configuration

In order to compile with SLF4P support,

1. include the path to the slIf4p library in the project search or in the global library
path

2. add the conditional symbol HABARI_LOGGING to the project options

Delphi
choose Project | Options... | Delphi Compiler > Conditional defines
add HABARI_LOGGING

Lazarus

choose Project | Project Options ... | Compiler Options > Other
add -dHABARI_LOGGING in the Custom options field

LoggingHelper unit

A simple LoggingHelper unit is located in the demo\common\ directory and can be copied to
a project to add slf4p support with little extra coding.

Code example

uses

LoggingHelper,

https://github.com/michaelJustin/slf4p

Logging with SLF4P 65

begin
// set up logging
LoggingHelper.ConfigureLogging;

The LoggingHelper unit may be adjusted to your configuration needs. Here is an example
which uses the SimpleLogger implementation (included in SLF4P).

Code example

unit LoggingHelper;
interface

uses
{$SIFDEF HABARI LOGGING}

djLogOverSimpleLogger, SimpleLogger
{$ENDIF HABARI LOGGING};

const
DEFAULT LOG_LEVEL = 'info';

procedure ConfigurelLogging(const LogLevel: string = DEFAULT LOG_LEVEL) ;
implementation

procedure ConfigurelLogging(const LoglLevel: string);
begin
{$IFDEF HABARI LOGGING}
SimpleLogger.Configure ('defaultLogLevel', LogLevel) ;
SimpleLogger.Configure ('showDateTime', 'true');
{SENDIF HABARI LOGGING}

end;

end.

66 Habari Client for Artemis 6.4

Conditional Symbols

Caution

All conditional symbols enable experimental or optional features, which are not
covered by the free basic support plan. Feedback (suggestions for improvements,
feature requests, and bug reports) are always welcome.

Conditional symbols for release builds

HABARI_ALLOW_UNKNOWN_URL_PARAMS

Disables strict connection URL parameter checking.

If this symbol is defined, connection URLs may contain arbitrary parameters. By default,
the library only accepts well-known connection parameters and raises an exception for
unknown parameters.

Broker versions: all broker versions.

HABARI_LOGGING
Enables logging support. Requires the open source SLF4P logging facade.

Broker versions: all broker versions.

See also: Logging with SLF4P

HABARI_SSL_SUPPORT

Enables SSL support. Support for SSL connections is an advanced / optional feature,
technical support is not included in the basic support plan.

The directory source/optional contains example implementations of Indy and Synapse
adapter classes with OpenSSL support. Please note that these are basic implementations
and not supported in the free basic support plan.

Broker versions: all broker versions.
See also: SSL/TLS Support

Conditional Symbols

HABARI_TCP_KEEPALIVE

Enables configuration option for TCP keep-alive.
For details please see chapter Connection URL parameters.
Broker versions: all broker versions.

Indy communication adapter only

HABARI_USE_INTERCEPT

Enables detailed logging of Stomp message frames
This uses the Indy interceptor implementation in unit IdInterceptSimLog.

All communication data will be logged to a file. A new file will be created for every new
STOMP connection. The file is located in a folder below the current working directory.

If this symbol is defined in a release build, a compiler warning will be emitted:

HABARI USE INTERCEPT should not be used for release builds

Broker versions: all broker versions.
Indy communication adapter only
Note: this feature requires permissions
« create a directory in the current directory if it does not exist

« create files

67

Conditional symbols for unit test projects

TEST_OPTIONAL_UNITS

Enables tests for experimental / optional units.

HABARI_TEST_SYNAPSE

Enables Synapse communication adapter in DUnit/FPCUnit tests, default is Indy.
Supported for: all versions.

HABARI_TEST_USE_MGMT_API

Enables additional test steps

68 Habari Client for Artemis 6.4

If this symbol is defined, a broker-specific management client will be instantiated and
used in the tests to perform one or more of these actions:

+ create destinations on the message broker (test preparation)
« destroy destinations on the message broker (cleanup)
« check destinations for their pending message count

Actual actions depend on the message broker type, see HabariTestCase unit source code
for details.

Only available with the DUnit test suite, not for FPCUnit.
Uses SuperObject library (included) and Indy HTTP client
Available since version 5.2.0 (2017.10)

Status: This is work in progress / experimental

Broker versions: Apache ActiveMQ, Apache ActiveMQ Artemis and RabbitMQ. For
OpenMQ, a “no op” client will be used to keep the test source code compatible between all
broker versions.

SSL/TLS Support 69

SSL/TLS Support

SSL communication adapter classes

Habari Client for Artemis includes two experimental adapter classes for usage with
OpenSSL, one for Indy (Internet Direct) and one for Synapse.The units for these classes
are in the source\optional folder.

Adapter Class Unit
TBTCommAdapterIndySSL BTCommAdapterIndySSL
TBTCommAdapterSynapseSSL BTCommAdapterSynapseSSL

Table 9: Communication Adapters with SSL Support

Mixed Use

It is possible to use SSL and non-SSL connections in the same project:
« connections with the “stomp://” scheme will remain unencrypted
« connections with the “stomp+ssl://” scheme will use SSL

SSL configuration

The TBTCommAdapterIndySSL class includes very basic configuration of the Indy SSL
handler. Your server or your specific security requirements may require additional
configuration.

Indy SSL Demo

A demo application is included in common-producertool-ssl.
Code example
program ProducerToolIndySSL;
{SAPPTYPE CONSOLE}

uses

70 Habari Client for Artemis 6.4

// the Habari Client adapter class for Indy + SSL
BTCommAdapterIndySSL,
// required to set the default adapter

BTAdapterRegistry,
// the common demo unit for the producer tool
ProducerToolUnit in '..\common-producertool\ProducerToolUnit.pas',
// configuration support unit
CommandLineSupport in '..\common\CommandLineSupport.pas',
SysUtils;

begin

BTAdapterRegistry.SetDefaultAdapter (TBTCommAdapterIndySSL) ;

with TProducerTool.Create do
try
try
Run;
except
on E:Exception do WriteLn (E.Message) ;
end
finally
Free;
end;
ReadLn;
end.

Notes

+ the TBTCommAdapterIndySSL class must be registered using
(BTAdapterRegistry.SetDefaultAdapter(TBTCommAdapterIndySSL)

+ the project must be compiled with HABARI_SSL_SUPPORT
+ the connection URL must be in the form “stomp+ssl://server.com:sslport”

+ the OpenSSL libraries must be in the application search path

Example output

Habari Client for RabbitMQ 5.1.0 (c) 2008-2017 Michael Justin

Connecting to URL: stomp+ssl://localhost:61614

Publishing a Message with size 255 to queue: ExampleQueue

Using persistent messages

Sleeping between publish 0 ms

313 INFO habari.TBTCommAdapterIndySSL - Verifying SSL certificate

313 INFO habari.TBTCommAdapterIndySSL - Issuer: /C=GB/ST=Greater Manchester/L=Sa
1ford/O=COMODO CA Limited/CN=COMODO RSA Domain Validation Secure Server CA

313 INFO habari.TBTCommAdapterIndySSL - Not After: 09.04.2018 01:59:59

313 INFO habari.TBTCommAdapterIndySSL - Verifying SSL certificate

313 INFO habari.TBTCommAdapterIndySSL - Issuer: /C=GB/ST=Greater Manchester/L=Sa

SSL/TLS Support

1ford/0O=COMODO CA Limited/CN=COMODO RSA Domain Validation Secure Server CA
313 INFO habari.TBTCommAdapterIndySSL - Not After: 09.04.2018 01:59:59

329 INFO habari.TBTStompClient - Connected with RabbitMQ/3.6.10 using STOMP 1.2
Sending message: Message: 0 sent at: 28.06.2017 10:26:43

sent at: 28.06.2017 10:26:43

sent at: 28.06.2017 10:26:43

sent at: 28.06.2017 10:26:43

sent at: 28.06.2017 10:26:43

sent at: 28.06.2017 10:26:43

sent at: 28.06.2017 10:26:43

sent at: 28.06.2017 10:26:43

sent at: 28.06.2017 10:26:43

sent at: 28.06.2017 10:26:43

Sending message: Message:
Sending message: Message:
Sending message: Message:
Sending message: Message:
Sending message: Message:
Sending message: Message:
Sending message: Message:

Sending message: Message:

O 0 Jd o 1 WN K

Sending message: Message:
Done.

/1

Support

Support for SSL/TLS connections and the example adapter classes is not included in the
basic support package of Habari Client for Artemis.

72 Habari Client for Artemis 6.4

Useful Units

BTStreamHelper unit

This unit contains the procedure LoadBytesFromStream which can be used to read a file
into a BytesMessage.

Code example

// create the message
Msg := Session.CreateBytesMessage;

// open a file
FS := TFileStream.Create('filename.dat', fmOpenRead) ;

try
// read the file bytes into the message
LoadBytesFromStream(Msg, FS);

Size := Length(Msg.Content) ;

// display message content size
WriteLn (IntToStr (Size) + ' Bytes');

finally
// release the file stream
FS.Free;

end;

BTJavaPlatform unit

This unit contains some helper functions for Java dates. Java dates are Int64 values based
on the Unix date.

function JavaDateToTimeStamp (const JavaDate: Int64): TDateTime;

function TimeStampToJavaDate (const TimeStamp: TDateTime): Int64;

Library Limitations 73

Library Limitations

MessageConsumer

How do I implement synchronous receive from multiple
destinations?

The library does not support synchronous receive from more than one destination over a
single connection.

To receive messages synchronously (using Receive and ReceiveNoWait) from two or more
destinations, create one connection per destination.

Background: all pending messages in a connection are serialized in one TCP stream, so
reading only the messages which come from one of the destinations would require
'skipping' all messages for other destinations.

Message properties

Only string data type supported by Stomp

The STOMP protocol uses string type key/value lists for the representation of message
properties. Regardless of the method used to set message properties, all message
properties will be interpreted as Java Strings by the Message Broker.

As a side effect, the expressions in a Selector are limited to operations which are valid for
strings.

Timestamp properties are converted to a Unix time stamp value, which is the internal
representation in Java. But still, these values can not be used with date type expressions.

Broker-specific exceptions
Apache ActiveMQ 5.6 introduced support for numeric expressions in JMS selectors®.

Multi threading

A session supports transactions and it is difficult to implement transactions that are multi-
threaded; a session should not be used concurrently by multiple threads.

29 https://issues.apache.org/jira/browse/AMQ-1609

/4 Habari Client for Artemis 6.4

Free Pascal specific restrictions

the library has only been tested on the Windows platform

the included unit test project uses FPCUnit for Free Pascal / Lazarus instead of
DUnit

the third-party libraries for XML and JSON based object exchange do not support
Free Pascal

the library source code use the Delphi mode switch {$MODE DELPHI}
other limitations or restrictions may apply

Broker-specific limitations

Transacted Sessions

Transactional acknowledging

The STOMP implementations of Artemis and OpenMQ message broker do not support
transactional acknowledging of incoming messages.

Other broker specific limitations

For broker-specific notes, please read chapter Broker-specific notes.

Frequently Asked Questions

Frequently Asked Questions

/75

Technical questions

Why am I getting 'undeclared identifier
IndyTextEncoding_UTFS8'?

Short answer
Your Indy version is too old.

Long answer
The library requires a current Indy 10.6.2 version.

Solution
Please download a newer Indy version.

Why am I getting ‘Undeclared identifier: 'TimeSeparator''?

Short answer
Your Synapse version does not support your version of Delphi

Long answer
Delphi XE4 removed twenty deprecated global variables. For more details, see

http://docwiki.embarcadero.com/RADStudio/XE4/en/Global_Variables.

Solution
Please use Indy instead of Synapse or use a compatible version of Synapse.

Why am I getting 'Found no matching consumer' errors?

Short answer

The client closed a consumer while there still were pending messages on the wire for it,
and then tried to receive the pending messages with a new consumer.

Long answer
If the client subscribes to a destination, it creates a unique subscription identifier and

passes it to the broker. Messages which the broker sends to the client always include this

http://docwiki.embarcadero.com/RADStudio/XE4/en/Global_Variables

/6 Habari Client for Artemis 6.4

subscription identifier in their header properties. The client verifies that the subscription id
in the incoming message has the same id as the consumer.

If the client closes the consumer before all messages waiting on the wire have been
consumed, and creates a new subscription (which has a new unique id), the remaining
messages which are waiting on the wire, will have a subscription id which does not match
the id of the new subscription. The client will raise an exception if no matching consumer
can be found.

Solution

Do not create another consumer on the same connection while there are still pending
messages for the first consumer. To discard all pending messages which are still waiting
on the wire, the client can simply close the close the connection and create a new
consumer on a new connection.

Example
Here is a small code example which causes this error®:

Code example

procedure TErrorHandlingTests.TestReceiveMessageForOtherSubscription;
var

Factory: IConnectionFactory;

Conn: IConnection;

Session: ISession;

Destination: IDestination;

Producer: IMessageProducer;

Consumer: IMessageConsumer;

Msg: IMessage;

begin
Factory := TBTConnectionFactory.Create;
Conn := Factory.CreateConnection;
Conn.Start;
Session := Conn.CreateSession (amAutoAcknowledge) ;
Destination := Session.CreateQueue (GetQueueName) ;
Consumer := Session.CreateConsumer (Destination) ;
Producer := Session.CreateProducer (Destination) ;
Msg := Session.CreateMessage;

Producer. Send (Msg) ;
Consumer.Close;
Consumer := Session.CreateConsumer (Destination) ;
Consumer .Receive (1000) ;
end;

In line 20 and 21, the consumer is closed and a new consumer created for the same
destination.

The Receive in line 22 will detect that the incoming message does not have a matching
consumer id and raise an EillegalStateException.

30This code example is included in the library unit test project

Online Resources 77

Online Resources

Third-party libraries

Internet Direct (Indy)

Project home http://www.indyproject.org/

Documentation http://www.indyproject.org/Sockets/Docs/index.EN.aspx

Installation http://www.indyproject.org/Sockets/Docs/Indy10Installation.EN.aspx
Snapshot https://indy.fulgan.com/ZIP/
Subversion https://svn.atozed.com:444/svn/Indy10/trunk

Subversion docs http://www.indyproject.org/Sockets/Download/svn.EN.aspx

SLF4P

Project home https://github.com/michaellustin/slf4

Git / Subversion https://github.com/michaellustin/slf4p.git

JsonDataObjects

Project home https://github.com/ahausladen/JsonDataObjects
SuperObject?!

Project home https://github.com/hgourvest/superobject

Git / Subversion https://github.com/hgourvest/superobject.git

31 Since December 2018, the SuperObject project is no longer maintained by its developer

https://github.com/hgourvest/superobject.git
https://github.com/hgourvest/superobject
https://github.com/ahausladen/JsonDataObjects
https://github.com/michaelJustin/slf4p.git
https://github.com/michaelJustin/slf4p
http://www.indyproject.org/Sockets/Download/svn.EN.aspx
http://www.indyproject.org/Sockets/Download/svn.EN.aspx
http://www.indyproject.org/Sockets/Download/svn.EN.aspx
https://svn.atozed.com:444/svn/Indy10/trunk
https://indy.fulgan.com/ZIP/
https://indy.fulgan.com/ZIP/
https://indy.fulgan.com/ZIP/
http://www.indyproject.org/Sockets/Docs/Indy10Installation.EN.aspx
http://www.indyproject.org/Sockets/Docs/Indy10Installation.EN.aspx
http://www.indyproject.org/Sockets/Docs/Indy10Installation.EN.aspx
http://www.indyproject.org/Sockets/Docs/index.EN.aspx
http://www.indyproject.org/Sockets/Docs/index.EN.aspx
http://www.indyproject.org/Sockets/Docs/index.EN.aspx
http://www.indyproject.org/

/8 Habari Client for Artemis 6.4

Synapse

Project home http://synapse.ararat.cz

Subversion https://synalist.svn.sourceforge.net/svnroot/synalist/trunk
Specifications

Stomp - Simple (or Streaming) Text Oriented Messaging
Protocol*?

Stomp home https://stomp.github.io/index.html
Stomp 1.2

Stomp 1.1

Stomp 1.0

Broker-specific Stomp documentation

ActiveMQ http://activemg.apache.org/stomp.html
Artemis http://activemg.apache.org/artemis/docs/1.0.0/interoperability.html
RabbitMQ https://www.rabbitmg.com/stomp.html

Online articles

Title Broker
Firebird Database Events and Message-oriented Middleware* All
Discover ActiveMQ brokers with Delphi XE4 and Indy 10.6* ActiveMQ

32 http: //en W|k|Ded|a org/wiki/Streaming_Text Orlented Messaging_Protocol

and- mdy 10-6/

https://mikejustin.wordpress.com/2013/07/07/discover-activemq-brokers-with-delphi-xe4-and-indy-10-6/
https://mikejustin.wordpress.com/2013/07/07/discover-activemq-brokers-with-delphi-xe4-and-indy-10-6/
https://mikejustin.wordpress.com/2012/11/06/firebird-database-events-and-message-oriented-middleware/
https://mikejustin.wordpress.com/2012/11/06/firebird-database-events-and-message-oriented-middleware/
https://www.rabbitmq.com/stomp.html
http://activemq.apache.org/artemis/docs/1.0.0/interoperability.html
http://activemq.apache.org/stomp.html
https://stomp.github.io/stomp-specification-1.0.html
https://stomp.github.io/stomp-specification-1.1.html
https://stomp.github.io/stomp-specification-1.2.html
https://stomp.github.io/index.html
http://en.wikipedia.org/wiki/Streaming_Text_Oriented_Messaging_Protocol
https://synalist.svn.sourceforge.net/svnroot/synalist/trunk/
http://synapse.ararat.cz/

Online Resources 79

Official RabbitMQ Management REST API Documentation® RabbitMQ
How to use the RabbitMQ Web-Stomp Plugin® RabbitMQ
RPC with Delphi client and Java server using RabbitMQ?’ RabbitMQ

Online Videos

Title Broker
Introduction to Messaging With Apache ActiveMQ?® ActiveMQ
GlassFish Message Queue - High Availability Clusters® OpenMQ

documentatlon/

36 https://mikejustin.wordpress.com/2013/11/27/how-to-use-the-rabbitmg-web-stomp-

Qlugln W|th delphl -and-free-pascal/

using-rabbitmg/
38http://vimeo.com/12654513
39 http://www.youtube.com/watch?v=RHUJBsy3udU

http://www.youtube.com/watch?v=RHUJBsy3udU
http://vimeo.com/12654513
https://mikejustin.wordpress.com/2013/05/21/rpc-with-delphi-client-and-java-server-using-rabbitmq/
https://mikejustin.wordpress.com/2013/05/21/rpc-with-delphi-client-and-java-server-using-rabbitmq/
https://mikejustin.wordpress.com/2013/11/27/how-to-use-the-rabbitmq-web-stomp-plugin-with-delphi-and-free-pascal/
https://mikejustin.wordpress.com/2013/11/27/how-to-use-the-rabbitmq-web-stomp-plugin-with-delphi-and-free-pascal/
https://mikejustin.wordpress.com/2012/10/26/official-rabbitmq-management-rest-api-documentation/
https://mikejustin.wordpress.com/2012/10/26/official-rabbitmq-management-rest-api-documentation/

80 Habari Client for Artemis 6.4

Support

Bug reports and support inquiries

Please send bug reports and support inquiries to cases@habarisoft.com, and specify your
message broker type and version.

To allow fast processing of your inquiry, please provide a detailed problem description,
including configuration and environment, or code examples which help to reproduce the
problem.

Advanced support

Advanced and experimental features such as (for example) SSL, third party libraries, Free
Pascal, Linux, non-Unicode Delphi versions and message broker configuration are not
covered by the basic support scheme.

mailto:cases@habarisoft.com

Broker-specific notes 81

Broker-specific notes

Keep messages with no route

If you send a message to an address with no queues (or in STOMP terms - a destination
with no subscribers) then the message will have nowhere to go and will be discarded. This
is normal pub/sub semantics. *°

Solution

The solution is to use the option anycastPrefix=jms.queue. in the acceptor element in
broker.xml to force the queues to type ANYCAST:

<acceptor name="stomp">tcp://0.0.0.0:61613?
anycastPrefix=jms.queue. ; tcpSendBufferSize=1048576; tcpReceiveBufferSize=104857
6 ;protocols=STOMP;useEpoll=true</acceptor>

Reference
https://stackoverflow.com/questions/51770006/

40https://stackoverflow.com/questions/51770006/

82 Habari Client for Artemis 6.4

Quick start guide for Apache ActiveMQ Artemis

Installation

For installation, please read the Apache ActiveMQ Artemis instructions:
« http://activemq.apache.org/artemis/docs/2.1.0/using-server.html
Windows service
On Windows you will have the option to run ActiveMQ Artemis as a service.
Start up screen
At start up, the broker logs information about enabled protocols and ports.
STOMP ports
STOMP is enabled on ports 5445, 61613 and 61616.
Broker IP address
The broker is reachable on all network adapters (address 0.0.0.0).
Other protocols

Other protocols such as AMQP and the OpenWire and HornetQ JMS wire protocols are also
enabled by default.

Supported protocol
Habari Client for Artemis supports the STOMP communication protocol only.

http://activemq.apache.org/stomp.html

Index

Reference
BTBrokerConstS......oviviiiiiiiiiiiiinininnennns 62
BTCommAdapterIndy........covvvivvvinnnnnnn. 29
(53 @]] aT=Tot o] o P 46
BUg reportS...ociiiii i e 80
CheckHeartbeat..........cccvoiiiiiinnee, 51
Conditional symbols for unit test projects
... 67
connect.accept-version........ooveevviiiinnns 49
connect.heart-beat...........ccooiiii 49
connect.host....ccoiiiiiiii i 49
Connection...ccvvii e 30
Connection URL.....covviiiiiiiiiiiiie e 30
ConnectionFactory.......ccooeeviiiiiiiiinnnnnnn. 29
ConnectTimeout........coevviiiiiiiie i, 13
ConsumerToOol..c.ocii i e 54
CreateDurableSubscriber..............o.o... 40
CreateObjectMessage.........cccvvvvivvninnnnn. 46
credentials.....cooiiiiiiiiiiiii 62
Destination.......cccooviiiiiiiiic i 35
DISCONNECT Receipt...cccovvviiiiiiennnnnnnn. 27
DUNIt 8, 61
EillegalStateException.........ccccevvvinennnnn. 76
Enables tests for experimental / optional
UNIES. i 67
experimental features............coeevvviinn. 80
Failover Support......ccoviviiiiii i 24
FPCUNIL. .o 8, 61
Free Pascal.......ccoviiiiiiiiiiiei e 8
HABARI_LOGGING.........ccovvviaeeennn. 64, 66
HABARI_RAW_TRACE........ccoviviiiiieennns 11
HABARI_SSL_SUPPORT................... 66, 70
HABARI_TCP_KEEPALIVE..........c.ccceu.e... 67
HABARI_TEST_SYNAPSE..........ccvvevvinnns 67
HABARI_TEST_USE_MGMT_API............. 67
HABARI_USE_INTERCEPT................ 11, 67
HABARI_USE_INTERCEPT.................eee 11
IdInterceptSimLOg.....coovviiiiiiiiiiineen s 67
IHeartbeat........cooviiii 50
IMessageProducer........ccovviiiiiiiiinnnnn. 46
IMQCONSUMEN . cuii i i it e iieee e 10
IMQCoNtEXt. i 9
IMQProdUCEr ... v e e 9
Internet Direct (Indy).....ovvviivvviiiiinnnnnnns 8
| ST =11 (o] o 1R 46

Index 83

JMSCorrelationID.......coovviiiviiiiiiieee s 42
JMSDeliveryMode......c.covvivviiiiiinniennneas. 42
JMSEXpiration.....ccooviiiiiiiiiinc 42
JMSMessageld........coovvviiiiiiiii e 43
JMSPriOFtY. o 42
JMSREPIYTO. it e 42f,
JMSTimestamp.....oooevviiiiii s 42
=Y. U 8
Limitations....ccovviiinn e 13, 73
I 80
oo 1| TR 64
LoggingHelper......ccoveiiiiiiii i 64
Message CONSUMEl.....c.ovieiiiiiiinnnrinennnns 38
Message Producer........cccoviiiiiiiiiiiinnnns 37
message propertieS......vovvieviiiiieninnnnns 73
MessageTransformer.........ccoovvveevvinnnnns 46
Multi threading........ccooeviiiii i 73
multiple destinations............cooevviinnnns 73
NativeXml....coooviiiii e 45
Object Message.....c.covvvvviiiiiiniiiiiinninenns 45
OMNIXML. i 45
OpPENSSL..ciiiiiiiiiii i 66, 69f.
point-to-point........cooiiiiiii 35
ProducerTool.....ccoviiiiiiiiii e 56
Programming Model...........ccvivvviiinnnnnn. 14
publish and subscribe............cooviiiinnnn. 35
QUEUE. .ttt i i e 35
Receive....ccviiiiii 39
ReceiveHeartbeat............cooviiiiii it 51
ReceiveNoWait........ccooeviiiiiiii i, 39
SamplePojo....ooviiii e 46
SeleCtor. .o 73
1Y=] [Tt o] T 44
SEND Receipt....ccoviiiiiiiiiiiii e 27
SendHeartbeat..........coooiiiiiii 50
A =17=] [0] o 1R 30
SetDefaultAdapter.......ccoooviiiiiiiiiiinnnns 70
SetTransformer......c.oovviiiiiiiiiiiiiiens 46
SiMpleLogger....ccvveiiiiiiiiii e 65
1] P 80
StOMP 1.2, e 49
StOMP+SSlii 69
subscribe.receipt....ccovviiiiiiiiii 26f.

SuperObject......ccvviiiiiiiiii 45

84 Habari Client for Artemis 6.4

SUPPOMt e 80 | Throughputtest........covvviiiiiiiiiiinne. 60
SYNAPSE. it 8, 13, 61 e] o[36
Synchronous receive........cocvveevviienennn.. 73 TopicSubscriber......c.oooiiiiiiii 40
TBTCommAdapterIndySSL.................... 69 Transacted SesSionsS........ccvvvvvvinnnnns 32,74
L 73 transactions.......cccv i 73
tep.keepalive. ..o 24 UNIit TESES. .t iiiiii i e 61
Test destinations...........covvviiiiiiinnnne, 62 virtual host......coooiiiiii 49
TEST_OPTIONAL_UNITS.....ceviiviieiieennn 67 reCeIPL 27
Table Index

Table 1: CommuUNICatioN AdapPlers. ..o e e e r e anneas 13
Table 2: Failover Transport OptioNS. .. .o aaeeeens 25
Table 3: Session creation ParamelerS. ..o e 32
Table 4: Message Transformer ImplementationsS.......covviviiiiiiii e 45
Table 5: Example Applications (in alphabetic order).....ccooiiviiiiiiiiii e 52
Table 6: ConsumerTool Command Line OptioNS. . cuuiiiiiiiiiiiii i rii e niee s rinaees 54
Table 7: ProducerTool Command Line OPtioNS.....coouiiiiiiiiiii i rreeeaee e 56
Table 8: Throughput Test Tool Command Line OptioNS.....c.vvviiiiiiiiiiiiiiiii e 60
Table 9: Communication Adapters with SSL SUppOrt.......ocoviiiii i e 69
lllustration Index

IHustration 1: Programming MOdel.....c.ooiiiiiiiii i e e reee e 14
Illustration 2: Connection configuration dialog example.......ccoooviiiiiiiiiiiie e 53
Illustration 3: ConsumerTool demo appliCation....ccviiiiiiii i i i e e aas 55
Illustration 4: ProducerTool demo appliCation.....ccvviiiiiiiiiiii i i i e as 56
Illustration 5: Performance Test AppliCation......ccouviiiiiiiii e 58

Illustration 6: Throughput test tool OULPUL.....ciiii i 60

	Broker-specific information
	Installation
	Requirements
	Development Environment
	TCP/IP Communication Library

	Installation steps

	Simplified API introduced in version 6.0
	New interface types
	IMQContext interface
	IMQProducer interface
	IMQConsumer interface
	Source code example

	Breaking changes in version 6.0
	Removed conditional synmbol HABARI_RAW_TRACE
	Removed support for asynchronous message receive

	Communication Adapters
	Introduction
	Configuration of communication adapters
	Registration of communication adapter class
	Available communication adapters
	Limitations of the Synapse communication adapter class

	The Programming Model
	Tutorials
	Quick Start Tutorial
	Setting up the project
	Adding code to the project
	Run the demo
	Check for memory leaks
	Tutorial source code

	Map Message Tutorial
	Setting up the project
	Adding code to the project
	Run the demo
	Map Message Conversion with Apache ActiveMQ
	Tutorial source code

	Connection Factory
	Overview
	Creation and configuration
	Connection URL parameters
	Heart-beating Support
	TCP Keep-Alive (only supported with Indy)

	Failover Support
	Failover Transport Options

	Receipt Support
	SUBSCRIBE Receipt
	UNSUBSCRIBE Receipt
	SEND Receipt
	DISCONNECT Receipt

	Connections and Sessions
	Connections use Stomp 1.2 by default
	Step-by-Step Example
	Overview
	Add required units
	Creating a new Connection
	Connection URL Parameters
	Creating a Session
	Using the Session
	Closing a Connection

	Session types overview
	Transacted Sessions
	Create a transacted session
	Send messages
	Committing a transaction
	Rolling back a transaction
	Transacted message acknowledgement

	Destinations
	Introduction
	Create a new Destination
	Queues
	Topics

	Producer and Consumer
	Message Producer
	Persistent messages

	Message Consumer
	Message Selector

	Synchronous Receive

	Durable Subscriptions
	Description
	Creation

	Temporary Queues
	Introduction
	Library Support
	Resource Management

	Message Options
	Standard Properties
	Properties for outgoing messages
	Properties for incoming messages

	Reserved property names
	Examples
	Prefix for custom headers

	Selectors
	Supported message brokers

	Object Messages
	Introduction
	Object Serialization

	Message Transformers
	Memory Management
	Assign a Message Transformer
	Create and Send an ObjectMessage
	Complete Example using NativeXml

	Stomp 1.2
	Connection configuration
	Specification

	Sending heart-beat signals
	Checking for incoming heartbeats
	Reading server-side heartbeats

	Example Applications
	Shared units for demo projects
	ConsumerTool
	Examples

	ProducerTool
	Examples

	Performance test
	Throughput test
	Examples

	Unit Tests
	Introduction
	Test project configuration
	Logging
	Raw message logging
	Optional units
	Synapse communication adapter

	Test units
	Test execution
	Requirements
	Test destinations

	STOMP 1.2

	Logging with SLF4P
	Introduction
	IDE and project configuration
	Delphi
	Lazarus

	LoggingHelper unit

	Conditional Symbols
	Caution
	Conditional symbols for release builds
	HABARI_ALLOW_UNKNOWN_URL_PARAMS
	HABARI_LOGGING
	HABARI_SSL_SUPPORT
	HABARI_TCP_KEEPALIVE
	HABARI_USE_INTERCEPT

	Conditional symbols for unit test projects
	TEST_OPTIONAL_UNITS
	HABARI_TEST_SYNAPSE
	HABARI_TEST_USE_MGMT_API

	SSL/TLS Support
	SSL communication adapter classes
	Mixed Use
	SSL configuration

	Indy SSL Demo
	Notes
	Example output

	Support

	Useful Units
	BTStreamHelper unit
	BTJavaPlatform unit

	Library Limitations
	MessageConsumer
	How do I implement synchronous receive from multiple destinations?

	Message properties
	Only string data type supported by Stomp

	Multi threading
	Free Pascal specific restrictions
	Broker-specific limitations
	Transacted Sessions
	Other broker specific limitations

	Frequently Asked Questions
	Technical questions
	Why am I getting 'undeclared identifier IndyTextEncoding_UTF8'?
	Why am I getting ‘Undeclared identifier: 'TimeSeparator'’?
	Why am I getting 'Found no matching consumer' errors?

	Online Resources
	Third-party libraries
	Internet Direct (Indy)
	SLF4P
	JsonDataObjects
	SuperObject
	Synapse

	Specifications
	Online articles
	Online Videos

	Support
	Bug reports and support inquiries
	Advanced support

	Broker-specific notes
	Keep messages with no route
	Solution
	Reference

	Quick start guide for Apache ActiveMQ Artemis
	Installation

	Index

