gg HABARI

CLIENT LIBRARIES

Getting started with

Habari STOMP Client for
ActiveMQ

Version 9.4

2 Habari STOMP Client for ActiveMQ 9.4

LIMITED WARRANTY

No warranty of any sort, expressed or implied, is provided
in connection with the library, including, but not limited
to, implied warranties of merchantability or fitness for a
particular purpose. Any cost, loss or damage of any sort
incurred owing to the malfunction or misuse of the library
or the inaccuracy of the documentation or connected with the
library in any other way whatsoever is solely the
responsibility of the person who incurred the cost, loss or
damage. Furthermore, any illegal use of the library is
solely the responsibility of the person committing the
illegal act.

Trademarks

Habari is a trademark or registered trademark of Michael Justin in Germany and/or other countries.
Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions. The
Android robot is reproduced or modified from work created and shared by Google and used according to
terms described in the Creative Commons 3.0 Attribution License. Embarcadero, the Embarcadero
Technologies logos and all other Embarcadero Technologies product or service nhames are trademarks,
service marks, and/or registered trademarks of Embarcadero Technologies, Inc. and are protected by the
laws of the United States and other countries. IBM and WebSphere are trademarks of International
Business Machines Corporation in the United States, other countries, or both. HornetQ, WildFly, JBoss and
the JBoss logo are registered trademarks or trademarks of Red Hat, Inc. Mac OS is a trademark of Apple
Inc., registered in the U.S. and other countries. Oracle, WebLogic and Java are registered trademarks of
Oracle and/or its affiliates. Pivotal, RabbitMQ and the RabbitMQ logo are trademarks and/or registered
trademarks of GoPivotal, Inc. in the United States and/or other countries. Other brands and their
products are trademarks of their respective holders.

Errors and omissions excepted. Specifications subject to change without notice.

Contents
Broker-specific information......ccveciiiirieimnssrrassns s srs s r s ssa s ssra s sns s rnnnsnnnnnnas 7
1 13 = 1 = oo o 8
2= o [T =T 3 4 = 4 S 8
[DEAVZ<1 o] o] 0 a =T o ol = 0 VAT o] g1 0 1] o P 8
TCP/IP CommuNICation Library . ..o i i e e e e s e s e reere e nnernennens 8
=TS ST T 8
Installation StePS...iicciiiiri i irssrs s srr s s r s r s r s r s rr s rr s r s rr s rrnannannnnnnnn 8
Directory strucCtUre....ccciiiciii i irs s s sr s sra s ssa s ssansssansnnnnssnnsnnnnnnnns 9
Breaking Changes in Version 8.0 and 9.0.........ccccvvcivvecsrrnsssrnssssnnsnnanas 10
[= Lol od 1 T= 1 3 T« 1= 10
Other potentially breaking changes.......cccvaiiirirresmamsiesimasssnssessassassanssassansansas 10
Noteworthy changes in unsupported and experimental code..........cveciivinniinaes 10
) =] 01T T 10
Breaking Changes in Version 9.0.......ccviiieimammiemmsssrasmssssasssnssassssssasssnssasssnsnnnsnns 10
Communication Adapters.......ccvecriemimiesmnnrsassssssanssanssasssnssanssanssnnnns 11
03 8 o e T 1T ot o o o T 11
Configuration of communication adaplters.......coooiiiii i e 11
Registration of communication adapter Class......ccviiiiiiiiiii i 11
Available communication adaplers. .. .o 12
The Programming Model..........ciiiiiiiiiiiiinisn v s n s s s s nn s 13
Classic and modern APL.......cccccvierimmasmernemassassasassassasassessnsassassnsansassasansassnsnnnans 13
(O] 1= = Lo Y o 13
1o L= o T Y o PP 13
Tutorials....cccuviiiiirrnsrre s srrs s ss s ss s ssanssannssnnssnnnssnnssnnnsnnnsnnnns LD
Quick Start Tutorial.......ccviiiiiii i s s sy 15
Setting Up the ProjJeCl. . i e 15
Adding code to the ProJeCh. .. 15
R | T o g = L= o T J PP 17
(O =Tl (g0 (o] ol 0 0 1=T a o] V2 [=T= 1 PPN 17
IV (o] g 1= Y =T o U o] = oo T =P 18

Connection Factory.......cccuvmminmssssssnsssnnssssnssssnnsssnnsssanssssnnsssnnssnannsnnns 19

L0 8T Y = 19
Creation and configuration......ccccvicricremiiresms s s s s s s s ssessansanssnnsnnsnnnnns 19
Connection URL parametersS....icccureimitmsmmansmsassmsssssssssssssssassssasssssssansssannnsnnnns 21
Heart-beating SUP PO . ..o i e e 21

[2= T of =T o 1] 10T o o T o e 21
1S] O R 1= == T o) P 21
UNSUBSCRIBE RECEIPT. .t utiitiitiiteitsiteeeassateae s sae e ae s e sese s e s e reeeseeeae e enens 22

1 A B 2= o1 o1 22
DISCONNECT RECEIPE. .ttt tiie s raie e e s et aare e saaan e saneesannesranneerannneanns 22
Connections and SeSSIONS....cciiiiiiriresmransmransssassssassssassssansssansssnnsssnnnns 24
Connections use Stomp 1.2 by default........ccccveririmirnrriarsre s snasanss 24
Step-by-Step EXample....ccioiiiieii i snis s s s s s s s s s s s s snn s nnnnnnnnnnn 24

(O VT VA= S 24

4 Habari STOMP Client for ActiveMQ 9.4

Add reqUITEA UNIES. i e e e 24
Creating @ New CoNNECHION. ... ot e e ne e 25
Connection URL Parameters.uiiieii it et et e e e e e s aneeas 25
(O g =T] o e = TS =11] o P 25
(=] oo o TR === T 26
(@1 [oT=]] o To =T @{e]] =Tox u o] o 1RF PP 26
SEeSSioN tYPeS OVeIrVIE@W. . uuueiie i rs s srs s sra s snra s nsa s srs s sra s ssassasnnsssnnssnnsssnnnsnnnnnnns 26
Transacted SeSSIONS....cciieirieriersrariasansa s ssasassassasaasassassassnsansassnsansassnssnsansnsnnnns 27
Create a transacted SESSION. ... it e 27
Y= T I 0 g L= ET 3= T =T 28
Committing @ tranSaCtioN e 28
Rolling back @ transaction......coeiiii i s 28
Transacted message acknowledgement. 29

[2 Y] o 3 1= 1 o o Y o 1N 1)

0 o e LT o o o T o e 30
Create a new Destination.......cccvverirmirisrss s s s s s s s s s snnsasnnnanss 30

L@ T L= 1< PP 30

05 [0 31
Producer and CONSUMEK....cccurrammmsanmssansmssnnsssnsssannsssnssssnnssnnnssnnnssnnnsnnnnns 32
MEeSSage ProdUCEr . i iiereranrsarsa e ssa s nra e s s s rasnasnassaasansaanasnannrannsnsansansansans 32
ST S [=] Y ol 0 =TT Y= TP 32
MESSAgE CONSUM I uuuutiannransrrassrassnssssssssssssssssmsssmsssssssssssssssssssssssssnssssssnnssnnssnnns 33
T Y= o Y= [Tt o] T 33
SYNChIrONOUS RECEIVE...ciumieiieiiriraramsm st sie st s s sansan s s s nsansansanssnnnnnnnnsnnsnns 33
Durable SubscriptionS......ccciiiriimsessn s sssa s s sss s s rsnnnnnns 39
[DT =F = of o 1 o o1 3 35

L@ 1=) o o] o TR 35
Temporary QUEUES...uurrirssssssssssmsssssssssssssssssssssssssssssssnsssssnnnnsssnnnnnsnnns 36
3 1 o e [T ot o'oY o TS 36
1 = VS YU 0o To] o o 36
L] o] U] ol 7 =1 o F= T [T =T o X 36

[F=TSE=F- T T 0 o1 o o o T RC I 4

Standard Properties..ccicciiciiaria i immar s s s s s s s ssasrasrassassansansnnsnnnsnnsnnsnnsan 37
Properties for OULgOING MESSAgES. ...ttt ittt ittt i it i e aae e e e aare e raes 37
Properties for iNCOMING MESSAgES. . ittt i it aee s 37

Reserved property NameS...c.icicirimrersasansarsnsassasassasassassassssassssassnsassnsansassnsassnnans 38
=] 0] 1= P 38
Prefix for CUSTOM headersS. ... e eanes 39

1Y =] 1= ot o T o= 39
YU o] oTo] au=Ta g g=TIY-Ta <N o] o] =] =P 39

Map MeSSagesS...cccumrrrrnmmmrssnnnmssssnnnsssssnnnsssssnnnssssnnnssssnnnnsnssnnnnssnnnnnnnnnannssd0

0 o e LT o o o T o e 40
U= Lo LI =] 0 0] o L= P 40
Map MeSSage TranN S O M . . ettt e e e e e e e naaneanennes 40
Transformation Identifier......cve i 41

Example ProducerTransform implementation with TStrings........cccooiiiiiiiiin . 42

5

object MessagesllllllllllllllllllIIIIIllllllllllllllIIIIIllllllllllllllllllIllllllllllllllllllll44
10 1 o e LT o o o T o e 44
Object Message Tran S OrmMIE ... it et ee e 44

Simplified API......cccccciiiiii i s s s s sra s sssn s ssnnssssnnsssansssnnsannnnena 30

New interface typPesS...cciciiiaiimiri i i s s s s s s s s ssessansassansanssnssnsnnnnnnss 46
IMQContext interfacCe....cvccviariarirarira s s ss s s s ssansanssassanssanssnssnnsnnsnnnsnns 46
IMQProducer iNterfacCe. . ..icciiriara i srseri s s s srassassra s nrassansnasssnnsansnnnnansnnnnnns 46
IMQConsumer interfaCe..icciaiiririrare s s s raa s s s saa s ra s assnsnasnanssnssnnsannas 47
Source code eXamPle. . i i rrirr i ra s rra s EEa R Ea R ErnnEnnEnnnE 47
R o 115 2 e 48
Connection configuration.......cccviieriraririsrariere s ssssassssa s s s ssnsassasassassnsassnsnnnns 48
1Y 1= o 1 o= o o 49
Sending heart-beat signals.......cciciiiiririesrasrs s s s s s s s s snassanssnsnannas 49
Checking for incoming heartbeats.......ciiciiiiiresmiarresrsre s s srsn s s s nssnsrannns 50
Reading server-side heartbeats..........cccccviiiiic i srn i rrssrs s s s s r e 50
Example ApplicationsS....ccuiicciiicitmismmsssmssssssssssssassssassssnnsssansssnnssnnnnss 52
L0 3T =T Y= e 52
N o 53
CONSUMEITOO . uiiieiieiiemramsamsanssessa s ssassanssasaasaansansansanssassansansanssnssnssnsnansansansnnsns 53
common-consumertool / common-consumertool-fpC.....cccviiiiiiiiiiiiiiii i 53
=]] 0] 1= PP 54

[T LT ol I o o e 54
common-producertool / common-producertool-fPC....ccvviiiiiiiiiiii i i e 54
=]] 0] 1= PP 55

[0 1= o o T] 5 T- 1 e 55
Performance test......ccciiiiririmrarimimr i s s s s s s s ssasassassasassassnsansasnnnans 56
PiNgGBrOKeF...uiiiirririesrssa s s s s srassassassansaassansansassanssnsanssannansansansnnsnnnsnnsnns 57
Throughput test.....ciciiiiiriiria i rra s s s s s ss s s s s s s ssansnnnnnsanssnsnnnns 58
=]] 0] 1= PP 58

L 3 T o =] o PR 1 0)

B0 X o oo X 1T ot o o J o T 60
Test project configuration.......ccciciiiriririie i s s s s s s s s nnnns 60

1o Y o 1 T 60

(@ o o F=1 I 0T] (=P 60
LI o Ty T 60
BT o= T (=T oL T oo T o T 61
S To [V =T 0 g 1= L= 61

TeSt AESTiNAtIONS. .ttt e 61

R 10 1 | = 61
Logging With SLF4P.......ccccciiiimirinssnsssmss s s sssssssssssssnsssnsssnnsnnnnens 02
B 3o oo Yo [T o oo 1 o 62
IDE and project configuration.......ccveviimimimsmimsasi s mssassassassassansansansansnnsnns 62
371 o] o PP 62

= 72 | 1 1= P 62
LoggingHelper Unit......ccccciiciiiriiiinssns s sr s s s s sra s ssassassnsssanssnssansansnnnsnns 62
Conditional Symbols......ccccciiiiiiiiiiessiiins s s s s r s 64

Experimental or optional features..........ciciiiiminiie i e s s e 64

6 Habari STOMP Client for ActiveMQ 9.4

HABARI_ALLOW_UNKNOWN_URL_PARAMS. ..ottt iiese e sesesssennenaennennans 64
HABARI_ENABLE_FAILOVER_PROTOCOL. ...utiitiitiiitiasesesanesesaesanesnesnnesnesneannennens 64
HABARI_LOGGING. ..t uutiitiiteieieieeateate st eesesaeeansasssnesnesaesansansanesnesneaneaanennennens 64
HABARI _SSL._ SUPP O RT ...ttt ittt sttt st et e e e e re e raerae s e s e e e s e e e aneaneaneaneaneanenes 64
SSL/TLS SUuppoOrt...cccccivimmrsnsmssnsmsnssssnsssansssassssnssssnsssnnsssnssssnsssnnsssnnsnnnnss®5
SSL communication adapter classSes.....ccccuiiriimrnsrmssnra s srss s s s rr s 65
DT O F = 65

1S3] (o] o] o 18 L= o] o P TR 65
INAY SSL DeMO..uuciuciicmiumiiertasmanssassassansaassassssssassasssassansansaasssnssnnsansansannsnnssnsnnnnas 65

NN o 66
TrOUDIESNOOTING. . e e 66
=] o] 1= 3o 101 T 67

£ T 0T 5 T] o 67
Failover Protocol SUpport.......ccciiicmimmimsesmssssasssssssssnsssnsssansssnnssnnnnns 68
ST 0 18T =T 0 0T 68
Failover Transport OptioNS. ..o e e e e e rn e e enneans 68
Useful UNitS....cccvimicimirismnemssmsessesssessasssnssasssnssnsssnssassanssassanssnssnnssassanss 7 0
BTStreamHelper Unit....ccviciicieiniire s i s s s s s s ssassa s ssansanssnssanssnssnnsnnnns 70
BTJavaPlatform unit......cccciiiiiisrirsrsn s s s s sr s s s s s s s n s mnans 70
Library Limitations.....cciiciiiiiiicini s snnssns s s snsa s sssassssnnssanssnannnnnns 71
MESSaAgECONS UM K . e uiueiieriesuansmstasta st s st saas s san s saassansansaanaansansannannsnnsnnnnnnsnns 71
How do I implement synchronous receive from multiple destinations?................... 71
Message ProPertieS. uciiiariririe i st st ssa s s s s s s sansaa s s s s naanannnnnnnnss 71
Only string data type supported by StOmMpP....coiiri i 71
Multi threading....ccccvicrieririeirari i srs s s s s s s s s ssa s s saasnanssnnsnnsansnnnsnnsnns 71
Free Pascal specific restrictionsS.....cccvcviimimimiriein s s srasnnsssssassassanssnssnsnnsnnns 72
Broker-specific limitations.......cccuiiiiiiiiiisiin s insssrs s srr s s s rr s sr s e 72

L LTz [0 <o IS =TS [0 o =P 72
Other broker specific IMitations.......ci i e 72

Frequently Asked Questions.....cccccvviiiiiirmsrnssrs s sns s ssn s snnnsnnas 7.3

Technical qUESTIONS......ciiciiiiirii i rr s s s s s s s s s s s s nsnmnnannnnnnnns 73
Why am I getting 'undeclared identifier IndyTextEncoding_UTF8'?.........covvvvvvinnnnn. 73
Why am I getting ‘Undeclared identifier: 'TimeSeparator'’?........cooviiiiiiiiiiiiiiinnnns 73
Why am I getting 'Found no matching consumer' errors?........cccovviiviiiiiiiiiinennnn, 73
Does the library support non-Unicode Delphi versions?......ccevvviiiiiiiiii i iieennnn, 74
How can the client application detect network connection [0SS?.........ccoviiiiiiinnnn. 75

ONIiNE RESOUINCES. . uiuurrrrennsssssnsssnnsssssssnsssssssssnsnsnnsssssssnsnnssssssnnnnnnnsnnnnnns 70

Third-party libraries......cccviciiiiiiiinsriairarie s s s s s s s s s s rra s nsa s nsnnnnnnss 76
1 T P 76
F Y == LAV 1= o 1= = 76
SYNOPSE MORMOOE. . i i s e e e e e 76
510 T 76
I 76
JSONDAtaOD ECES. ... 77
R 5 L= ol T ot= 1 e o TS 77
L0 701 1T 3 1= T o T o] 1= 77

ONIINE Vid@OS. . .iiiiiiiieeeeeeeeessnsnssnsnnsnnnnnnnnnns 78

Broker-specific information 7

R T 5 o T o] o s 79
Bug reports and support iNQUIFiES.cciiciriiciririe s s s s s s s s s ra s rnnnrans 79
YXa AVZ=Y aol=Ta IR0] o] 0 o] o e 79
Broker-specifiC NOteS.....ccuiiiiiiiiiiirssrr s srr s s r s r s rrnarnnrannan 80
Authentication plugin.......c.cciiciiiciiiiiesrrs e srs s s s s s s s s s s s s aannnnnnns 80

Y 1] =T of o 1 o [T 4 T T o1 o o o 1 80

R = =T ot o1 o 80
Using numeric selectors to filter Messages. ...ccvvvvi i e 80

[0] 3 =T ot ol LT F- T 81
Object SerialiZation. ... i e 81
“Delphi Only” vs. “"Cross-Language” Object Exchange........cccooviiiiiiiiiiiicii e, 81
MemOry ManagemEnt. ... e 82
Broker SpecifiC DEeMOS. ...ccuiiiimrn i s s s s ssasssn s ssansanssnssassanssnssnssansanssnsnnnnas 83

B o] T Y = L 1= o Lot = o] o] L= 84
Delay and Schedule Message DeliVery....iiuiiiiii i i i i i e enneaeanaeans 86
Connection troubleshooting......cccuviiiiiniiimrnsnrssssra s s ssa s ssannnnans 87
Performance demoO....c.iciirimrmmammermersessasansassassassassnsansassassassnssnsansassnssnssnsansannnnss 87
Socket error 10060 (Connection timed OUL).....c.oioeiiii i e 87
Socket error 10061 (Connection refused)......ccovvvieiieiiiiiii e eaaes 87
Socket error 10054 (Connection reset by peer)....covvviviiiii i i eeens 88
3 T = P 89

Broker-specific information

For broker-specific notes, please read chapter
Broker-specific notes on page 80 ff.

8 Habari STOMP Client for ActiveMQ 9.4

Installation

Requirements

Development Environment

The library may be used with
- Embarcadero Delphi 2009 Update 4 or higher

+ Free Pascal 3.2.2 or higher

TCP/IP Communication Library

This library requires one of these TCP/IP libraries:
. Internet Direct (Indy) 10.6 (recommended)?
+ Synapse
+ mORMot 1.18
+ mORMot 2.0 stable
The source code for TCP/IP communication libraries is not included in the installer.?

Test Suites

« The DUnit test suite requires the Delphi 2009 version of DUnit for compilation.

« The FPCUnit test suite.requires Lazarus 2.0.12 or newer to run.

Installation steps

The installer application will guide you through the installation process.
By default Habari STOMP Client for ActiveMQ will be installed in the folder

C:\Users\Public\Documents\Habarisoft\habari-activemqg-9.4

1 This is the primary adapter class being used for development and testing of the library.
2 See chapter "Online resources" for download addresses.

Directory structure

<inst>
\- demo
\- ...
\common-tests
A\- L.
\common-tests-fpc
\- ...
\- demo-brokerspecific
_
\- docs
\- HabariActiveMQGettingStarted.pdf
\html
_
\- libraries
_
\- source
\optional
_
license.txt
THIRDPARTYLICENSEREADME. txt
unins000.dat
unins000.exe

Directory structure

Demo applications

DUnit test project

FPCUnit test project
Broker-specific demo applications
Documentation

API documentation

Third party libraries

Library source code

Optional source code

License information

Third party license information

Uninstaller data
Uninstaller

9

10 Habari STOMP Client for ActiveMQ 9.4

Breaking Changes in Version 8.0 and 9.0

Major changes

Rename unit BTIJMSInterfaces to BTMQInterfaces

Other potentially breaking changes

Rename class TBTCommAdapter to TBTAbstractCommAdapter
Rename procedure BTAdapterRegistry.Register to RegisterCommAdapter

Rename procedure IDispatching#Dispatch(IMessage) to
IDispatching#DispatchMessage(IMessage)

IHeartbeat#ReceiveHeartbeat raises an exception if there is something else than a
heart-beat waiting on the socket

Noteworthy changes in unsupported and
experimental code

Synapse

Use ssl_openssl3 instead of ssl_openssl in the complimentary Synapse
communication adapter for TLS/SSL

Remove support for asynchronous message receive from the complimentary
Synapse communication adapter

Breaking Changes in Version 9.0

There have been no API breaking changes in version 9.0.

Communication Adapters 11

Communication Adapters

Introduction

Habari STOMP Client for ActiveMQ uses communication adapters as an abstraction layer
for the TCP/IP library. All connections create their own internal instance of the adapter
class.

Configuration of communication adapters

No configuration is required for the communication adapters. Applications specify
communication and connection options in URL parameters or connection class properties
or connection factory settings.

Registration of communication adapter class

A communication adapter implementation can be prepared for usage by simply adding its
Delphi unit to the project.

Code example

program ClientUsingIndy;

uses
BTCommAdapterIndy, // use Internet Direct (Indy)
BTConnectionFactory, BTMQInterfaces,
SysUtils;

Behind the scenes, the communication adapter class will register itself with the
communication adapter manager in the BTAdapterRegistry unit.

Default adapter class

Applications typically use only one of the available communication adapter classes for all
connections.

The library allows to register two or more adapter classes and switch at run-time, using
methods in the adapter registry in unit BTAdapterRegistry - this feature is mainly for tests
and demonstration purposes.

If more than one communication adapter is in the project, the first adapter class in the
list will be the default adapter class. Example:

12 Habari STOMP Client for ActiveMQ 9.4

Code example

program ClientUsingIndyOrSynapse;

uses
BTCommAdapterIndy, // use Internet Direct (Indy) as default adapter class
BTCommAdapterSynapse, // and register the Synapse adapter class
BTConnectionFactory, BTMQInterfaces,
SysUtils;

The default adapter class can be changed at run-time by setting the adapter class either
by its name or by its class type.

Available communication adapters
The library includes four adapter classes for TCP/IP libraries.

Adapter Class Unit to add

TBTCommAdapterIndy (recommended)’ BTCommAdapterIndy

TBTCommAdapterSynapse BTCommAdapterSynapse
TBTCommAdaptermORMot1 BTCommAdaptermORMot1
TBTCommAdaptermORMot2 BTCommAdaptermORMot2

Table 1: Communication Adapters

3 This is the primary adapter class being used for development and testing of the library.

The Programming Model 13

The Programming Model

Classic and modern API

Apps may choose between a classic API, which is based on message producers / message
consumers, sessions, connections, and connection factories.

Alternatively they may use a modern, simplified API. (see page 46)

Both API versions are identical for all library versions. This allows an easy migration
between supported message brokers, if no broker-specific features are used.

Classic API

Classic API
ConnectionFactory

Creates

ﬁ Creates
Connection l Session

Creates Creates
MessageProducer] [Message MessageConsumer
Sends to Receives from

Destination Destination

Modern API

The modern API is a simplified API where a new IMQContext interface contains methods
which formerly were located in the ISession and IConnection interfaces.

14 Habari STOMP Client for ActiveMQ 9.4

Simplified API \

ConnectionFactory
Creates
MQContext
o) My
Creates | Creates
}3 ‘.._‘_
/ W
MQProducer MQMessage MQConsumer
Sends to Receives fron
Destination Destination

Tutorials 15

Tutorials

Quick Start Tutorial

This tutorial provides a very simple and quick introduction to Habari STOMP Client for
ActiveMQ by walking you through the creation of a simple "Hello World" application. Once
you are done with this tutorial, you will have a general knowledge of how to create and
run applications.

This tutorial takes less than 10 minutes to complete.

Setting up the project
To create a new project:

1. Start the Delphi IDE.
In the IDE, choose File > New > VCL Forms Application — Delphi
Choose Project > Options ... to open the Project Options dialog
In the options tree on the left, select 'Delphi Compiler’

Add the source directory of Habari STOMP Client for ActiveMQ and the Indy source
directories to the 'Search path'

i AW N

6. Choose Ok to close the Project Options dialog
7. Save the project as HelloMQ
Now the project is created and saved.

You should see the main form in the GUI designer now.

Adding code to the project

To use the Habari STOMP Client for ActiveMQ library, you need to add the required units to
the source code.

8. Switch to Code view (F12)
9. Add the required units to the interface uses list:

16 Habari STOMP Client for ActiveMQ 9.4

Code example

uses
BTConnectionFactory,
BTMQInterfaces,
BTCommAdapterIndy,
// auto-generated unit references
Windows, Messages, SysUtils,

10.Compile and save the project.

11.Switch to Design view (F12), go to the Tool palette (Ctrl+Alt+P) and select TButton,
add a Button to the form.

12.Double click on the new button to jump to the Button Click handler
13.Add the following code to send the message:

Code example

procedure TForml.ButtonlClick (Sender: TObject);
var

Factory: IConnectionFactory;

Connection: IConnection;

Session: ISession;

Destination: IDestination;

Producer: IMessageProducer;

begin
Factory := TBTConnectionFactory.Create('stomp://localhost');
Connection := Factory.CreateConnection;

Connection.Start;

Session := Connection.CreateSession(False, amAutoAcknowledge) ;
Destination := Session.CreateQueue('HelloMQ') ;
Producer := Session.CreateProducer (Destination);

Producer.Send(Session.CreateTextMessage ('Hello world!'));

Connection.Close;
end;

14.Add a second button and double click on the new button to jump to the Button Click
handler

15.Add the following code to receive and display the message:

Tutorials

Code example

procedure TForml.Button2Click (Sender: TObject) ;
var

Factory: IConnectionFactory;

Connection: IConnection;

Session: ISession;

Destination: IDestination;

Consumer: IMessageConsumer;

Msg: ITextMessage;

begin
Factory := TBTConnectionFactory.Create ('stomp://localhost');
Connection := Factory.CreateConnection;

Connection.Start;

Session := Connection.CreateSession(False, amAutoAcknowledge);
Destination := Session.CreateQueue ('HelloMQ') ;

Consumer := Session.CreateConsumer (Destination);

Msg := Consumer.Receive (1000) as ITextMessage;

if Assigned(Msg) then
ShowMessage (Msg.Text)
else
ShowMessage ('Error: no message received');

Connection.Close;
end;

17

16.Compile and save the project

Run the demo

« Launch the message broker

+ Start the application

+ Click on Button 1 to send the message to the queue

+ Click on Button 2 to receive the message and display it

You can run two instances of the application at the same time, and also on different
computers if the IP address or the host name of the message broker is used instead of
localhost.

Check for memory leaks

To verify that the program does not cause memory leaks, insert a line in the project file
HelloMQ.dpr:

18 Habari STOMP Client for ActiveMQ 9.4

Code example
program HelloMQ;
uses

Forms,
Unitl in 'Unitl.pas' {Forml};

{SR *.res}

begin
ReportMemoryLeaksOnShutdown := True; // check for memory leaks
Application.Initialize;
Application.MainFormOnTaskbar := True;

Application.CreateForm(TForml, Forml);
Application.Run;
end.

Tutorial source code

The tutorial source code is included in the demo folder. It does not include a .dproj file, so
you still need to add the Habari and Indy source paths to the project options.

Connection Factory 19

Connection Factory

Overview

A connection factory is an object which holds all information required for the creation of a
connection objects.

A connection factory instance is usually created and configured only once. It then may be
used to create actual connection objects when needed. For example, a worker thread may
create the connection factory once at program start-up and use it to create a new
connection object whenever a connection failure occurred.

Creation and configuration

The code example below shows a helper function which creates a connection factory, and
returns it using the interface type IConnectionFactory.

The factory will be freed automatically when there are no more references to it.

Code example

function TExample.CreateConfiguredFactory: IConnectionFactory;
var

Factory: IConnectionFactory;
begin

/) mm e

// create an instance

Factory := TBTConnectionFactory.Create('user', 'password',6 'stomp://localhost?
send.receipt=true');

[/ mmm e
// return the instance
[/ mmm e
Result := Factory;

end;

This code example is useful for most simple client applications. However, because the local
factory variable is declared as IConnectionFactory, advanced configuration properties in
the class TBTConnectionFactory such as ClientID and SendTimeout are not accessible.

To access them, declare the local factory with the class type as shown in the next
example:

20 Habari STOMP Client for ActiveMQ 9.4

Code example

function TExample.CreateConfiguredFactory: IConnectionFactory;

var
Factory: TBTConnectionFactory;

begin
et
// create and assign to local variable
et

Factory := TBTConnectionFactory.Create;

A
// additional configuration

/]
Factory.BrokerURL := 'broker.example.com';

Factory.UserName := 'guest';

Factory.Password := 'guest';

Factory.ClientID := 'myclientId';

Factory.SendTimeOut := 10000;

Factory.ConnectTimeOut := 10000;

e
// return the configured factory
)
Result := Factory;

end;

Warning: if the method signature is changed to return the class TBTConnectionFactory
instead, a memory leak will occur.

Code example

function TExample.Run;
var
F: IConnectionFactory;
C: IConnection;
begin
/]
// get a factory and use it to create a connection object
/e

F := CreateConfiguredFactory;

C := F.CreateConnection;

f] e
// start and use the connection

/]
C.Start;

/]
// close the connection

/e
C.Close;

end;

Connection Factory 21

Connection URL parameters

Heart-beating Support

STOMP 1.1 introduced heart-beating, its configuration is covered in the chapter Stomp 1.2

Receipt Support

The STOMP standard supports receipt messages since version 1.0:

"Any client frame other than CONNECT may specify a receipt header with an
arbitrary value. This will cause the server to acknowledge receipt of the frame
with a RECEIPT frame which contains the value of this header as the value of
the receipt-id header in the RECEIPT packet."**

With Habari STOMP Client for ActiveMQ, client applications may configure receipt headers
for the frame types listed below.

After the STOMP frame has been sent to the broker, the client library waits for the
RECEIPT frame for a defined time, which may be configured per frame type. If the broker
does not send a receipt within the time-out interval, the client library will raise an
exception. If the client receives a receipt with the wrong receipt-id header, it will raise an
exception.

Receipt Support Parameters

STOMP frame Parameter Example URL

SUBSCRIBE subscribe.receipt stomp://localhost?subscribe.receipt=true

UNSUBSCRIBE subscribe.receipt stomp://localhost?
unsubscribe.receipt=true

SEND send.receipt stomp://localhost?send.receipt=true

DISCONNECT disconnect.receipt stomp://localhost?disconnect.receipt=tru

SUBSCRIBE Receipt

To erquest server reseipts for SUBSCRIBE frames, use the optional connection URL
parameter, subscribe.receipt.

4 https://stomp.github.io/stomp-specification-1.0.html
5 https://stomp.github.io/stomp-specification-1.1.html#Header_receipt
6 https://stomp.github.io/stomp-specification-1.2.html#Header_receipt

22 Habari STOMP Client for ActiveMQ 9.4

Code example

Factory := TBTConnectionFactory.Create('user', 'password',6 'stomp://localhost?
subscribe.receipt=true');

If the broker does not send a receipt within the time-out interval, the client library will
raise an exception.

UNSUBSCRIBE Receipt

To erquest server reseipts for UNSUBSCRIBE frames, use the optional connection URL
parameter, unsubscribe.receipt.
Code example

Factory := TBTConnectionFactory.Create('user', 'password',K 'stomp://localhost?
unsubscribe.receipt=true');

If the broker does not send a receipt within the time-out interval, the client library will
raise an exception.

SEND Receipt

To erquest server reseipts for SEND frames, use the optional connection URL parameter,
send.receipt.

Code example

Factory := TBTConnectionFactory.Create('user', 'password',K 'stomp://localhost?
send.receipt=true');

If the broker does not send a receipt within the time-out interval, the client library will
raise an exception.

Note: for additional reliability, the client can use transactional send
(see section "Transacted Sessions").

DISCONNECT Receipt

To request server receipts for DISCONNECT frames, use the optional connection URL
parameter, disconnect.receipt.

Connection Factory 23

Code example

Factory := TBTConnectionFactory.Create('user', 'password',6 'stomp://localhost?
disconnect.receipt=true');

Without this parameter, the client will disconnect the socket connection immediately after
sending the DISCONNECT frame to the broker.

With disconnect.receipt=true, the client will send the DISCONNECT frame and then wait
for the broker receipt frame. If the broker does not answer, the client library will raise an
exception. The client application should treat its messages as undelivered.

Note: for additional reliability, the client can use transactional send
(see section "Transacted Sessions"), and message receipts (see
section "SEND Receipt").

24 Habari STOMP Client for ActiveMQ 9.4

Connections and Sessions

Connections use Stomp 1.2 by default

Connections use Stomp 1.2 by default since
Habari Client for Apache ActiveMQ 5.1
Habari Client for Apache Artemis 5.1
Habari Client for OpenMQ 7.2
Habari Client for RabbitMQ 5.1

The default protocol version is defined in the BTBrokerConsts unit. The default Stomp
version may be overriden by specifying a connection URL parameter.

Step-by-Step Example

Overview

This example will send a single message to a destination queue (ExampleQueue).

Add required units

Three units are required for this example
e a communication adapter unit (e. g. BTCommAdapterIndy)
e a connection factory unit (BTConnectionFactory)
e the unit containing the interface declarations (BTMQInterfaces)

The SysUtils unit is necessary for the exception handling.

Connections and Sessions 25

Code example

program SendOneMessage;
{SAPPTYPE CONSOLE}

uses
BTCommAdapterIndy,
BTConnectionFactory,
BTMQInterfaces,
SysUtils;

Creating a new Connection

New connections are created by calling the CreateConnection method of a connection
factory.

Code example

var
Factory: IConnectionFactory;
Connection: IConnection;

begin

Factory := TBTConnectionFactory.Create('user', 'password',6 'stomp://localhost');
Connection := Factory.CreateConnection;

« For connection factory creation and configuration options please see chapter
“Creation and configuration”.

« Since IConnection is an interface type, the connection instance will be destroyed
automatically if there are no more references to it in the program.

Connection URL Parameters

Connection URL parameters are documented in chapter "Connection URL parameters" and
in chapter "Stomp 1.2".

Creating a Session

To create the communication session,
e declare a variable of type ISession

e use the helper method CcreateSession of the connection, and specify the
acknowledgment mode

Please check the API documentation for the different session types and acknowledgement
modes.

26 Habari STOMP Client for ActiveMQ 9.4

Since Isession is an interface type, the session instance will be destroyed automatically if
there are no more references to it in the program.

Code example

Session := Connection.CreateSession(False, amAutoAcknowledge) ;

Using the Session

The Session variable is ready to use now. Destinations, producers and consumers will be
covered in the next chapters.

Code example

Destination := Session.CreateQueue ('ExampleQueue') ;
Producer := Session.CreateProducer (Destination);
Producer.Send(Session.CreateTextMessage ('This is a test message'));

Closing a Connection

Finally, the application closes the connection. The client will disconnect from the message
broker. Closing a connection also implicitly closes all open sessions.

Code example

finally
Connection.Close;
end;
end.

Note: Close will be called automatically if the connection is destroyed.
But because unclosed connections use resources, Close should
be called when the connection is no longer needed. When
logging is enabled, the connection class will also log a message
when a connection is destroyed without calling Close.

Session types overview

The table below shows the supported parameter combinations for the
Connection.CreateSession method and their effect on the session transaction and
acknowledgment features.

Parameters

CreateSession(False, amAutoAcknowledge)

CreateSession(False, amClientAcknowledge)

CreateSession(False, amClientIndividual)
CreateSession(True, amAutoAcknowledge)

CreateSession(True, amClientAcknowledge)

CreateSession(True, amClientIndividual)

CreateSession(True, amTransactional)

Table 2: Session creation parameters

® - not supported by ActiveMQ Artemis

Transacted Sessions

Connections and Sessions 27

Client MUST
acknowledge
message
receipt’

No

Yes (cumulative
effect)

Yes
No

Yes (cumulative
effect)

Yes

No

Transaction
support for

STOMP

Send Ack Version

v -
v v @
v v @
v -

1.0

1.0

1.2
1.0

1.0

1.2

1.0

A session may be specified as transacted. Each transacted session supports a single series

of transactions.

Each transaction groups a set of message sends into an atomic unit of work.

A transaction is completed using either its session's Commit method or its session's
Rollback method. The completion of a session's current transaction automatically begins
the next. The result is that a transacted session always has a current transaction within

which its work is done.

Create a transacted session

To create a transacted session, set the parameter of CreateSession to amTransactional as

shown in the code example

Code example

Session := Connection.CreateSession (amTransactional);

7 https://stomp.github.io/stomp-specification-1.2.html|#SUBSCRIBE_ack_Header

28 Habari STOMP Client for ActiveMQ 9.4

or (using the older API version)

Code example

Session := Connection.CreateSession(True, amTransactional);

This code will automatically start a new transaction for this session.

Send messages

Now send messages using the transacted session.

Code example

Destination := Session.CreateQueue ('testqueue');
Producer := Session.CreateProducer (Destination);
Producer.Send(Session.CreateTextMessage ('This is a test message'));

Committing a transaction

If your client code has successfully sent its messages, the transaction must be committed
to make the messages visible on the destination.

Code example

// send messages

finally
// commit all messages
Session.Commit;

end;

Note: committing a transaction automatically starts a new transaction

Rolling back a transaction

If your client code runs wants to undo the sending of its messages, the transaction may
be rolled back, and the messages will not become visible on the destination.

Connections and Sessions

Code example

// send messages
except

// error!
Session.Rollback;

end;

29

Note: rolling back a transaction automatically starts a new
transaction. A transacted session will be rolled back
automatically if the connection is closed.

Transacted message acknowledgement

Some library versions (see table "Communication Adapters” on page 12) support
transactions also for the acknowledgement of received messages.

When a transaction is rolled back or the connection is closed without a commit, messages
which have been acknowledged after the transaction start will return to unacknowledged

state.

Code example

// receive in a transacted session

Session := Connection.CreateSession(True, amClientAcknowledge) ;
Queue := Session.CreateQueue (GetQueueName) ;

Consumer := Session.CreateConsumer (Queue) ;

Msg := Consumer.Receive (1000) ;

// process the message

// acknowledge the message
Msg.Acknowledge;

// in case of errors, roll back all acknowledgements
Session.Rollback;

This is an experimental feature. It requires the STOMP 1.2 communication protocol.

30 Habari STOMP Client for ActiveMQ 9.4

Destinations

Introduction

The API supports two models:®
1. Point-to-point
2. Publish-and-subscribe

In the point-to-point model, a producer posts messages to a particular queue and a
consumer reads messages from the queue. Here, the producer knows the destination of
the message and posts the message directly to the consumer's queue. It is characterized
by following:

e Only one consumer will get the message

e The producer does not have to be running at the time the receiver consumes the
message, nor does the receiver need to be running at the time the message is sent

e Every message successfully processed is acknowledged by the receiver

The publish-and-subscribe model supports publishing messages to a particular message
topic. Zero or more subscribers may register interest in receiving messages on a particular
message topic. In this model, neither the publisher nor the subscriber know about each
other. A good metaphor for it is anonymous bulletin board. The following are
characteristics of this model:

e Multiple consumers can get the message

e There is a timing dependency between publishers and subscribers. The publisher
has to create a subscription in order for clients to be able to subscribe. The
subscriber has to remain continuously active to receive messages, unless it has
established a durable subscription. In that case, messages published while the
subscriber is not connected will be redistributed whenever it reconnects.

Create a new Destination
Queues

A gqueue can be created using the CreateQueue method of the Session.

8 See also: Wikipedia contributors. "Jakarta Messaging." Wikipedia, The Free Encyclopedia.
Wikipedia, The Free Encyclopedia, 24 Nov. 2024. Web. 5 Jun. 2025.

Destinations 31

Code example

Destination := Session.CreateQueue('foo');
Consumer := Session.CreateConsumer (Destination);

The queue can then be used to send or receive messages using implementations of the
IMessageProducer and IMessageConsumer interfaces. (See next chapter for an example)

Topics

A topic can be created using the CreateTopic method of the Session.

Code example

Destination := Session.CreateTopic('bar');
Consumer := Session.CreateConsumer (Destination);

The topic can then be used to send or receive messages using implementations of the
IMessageProducer and IMessageConsumer interfaces. (See next chapter for an example).

32 Habari STOMP Client for ActiveMQ 9.4

Producer and Consumer

Message Producer

A client uses a MessageProducer object to send messages to a destination. A
MessageProducer object is created by passing a Destination object to a message-producer
creation method supplied by a session.

Code example

Destination := Session.CreateQueue('foo');
Producer := Session.CreateProducer (Destination);
Producer.Send(Session.CreateTextMessage ('Test message'));

A client can specify a default delivery mode, priority, and time to live for messages sent by
a message producer. It can also specify the delivery mode, priority, and time to live for an
individual message.

Persistent messages

The delivery mode for outgoing messages may be set to persistent in one of two ways.
From the docs for TBTMessageProducer: "A client can specify a default delivery mode,
priority, and time to live for messages sent by a message producer. It can also specify the
delivery mode, priority, and time to live for an individual message."

Setting the default delivery mode
Code example

Destination := Session.CreateQueue('foo');

Producer := Session.CreateProducer (Destination);
Producer.DeliveryMode := dmPersistent;
Producer.Send(Session.CreateTextMessage ('Test message'));

Setting the delivery mode for an individual message
Code example

Destination := Session.CreateQueue ('foo');

Producer := Session.CreateProducer (Destination);
Producer.Send(Session.CreateTextMessage ('Test message'), dmPersistent,
BTBrokerConsts.DEFAULT_PRIORITY, 0);

Producer and Consumer 33

Message Consumer

A client uses a MessageConsumer object to receive messages from a destination. A
MessageConsumer object is created by passing a Destination object to a message-
consumer creation method supplied by a session.

Code example

Destination := Session.CreateQueue('foo');
Consumer := Session.CreateConsumer (Destination);

Message Selector

A message consumer can be created with a message selector®.

A message selector allows the client to restrict the messages delivered to the message
consumer to those that match the selector.

Synchronous Receive

A MessageConsumer offers a Receive method which can be used to consume exactly one
message at a time.

Code example

while I < EXPECTED do

begin
TextMessage := Consumer.Receive (1000) as ITextMessage;
if Assigned(TextMessage) then
begin
Inc(I);
TextMessage.Acknowledge;
L.Info(Format ('%d %s', [I, TextMessage.Text]));
end;
end;

Receive and ReceiveNoWait
There are three different methods for synchronous receive:

Receive The Receive method with no arguments will block (wait until a
message is available).

Receive(TimeOut) The Receive method with a timeout parameter will wait for the
given time in milliseconds. If no message arrived, it will return
nil.

9 The RabbitMQ message broker does not support message selectors

34 Habari STOMP Client for ActiveMQ 9.4

ReceiveNoWait The ReceiveNoWait method will return immediately. If no
message arrived, it will return nil.

Durable Subscriptions 35

Durable Subscriptions

Description

If a client needs to receive all the messages published on a topic, including the ones
published while the subscriber is inactive, it uses a durable TopicSubscriber.

The message broker retains a record of this durable subscription and insures that all
messages from the topic's publishers are retained until they are acknowledged by this
durable subscriber or they have expired.*®

The combination of the clientld and durable subscriber name uniquely identifies the
durable topic subscription.

After you restart your program and re-subscribe, the broker will know which messages
you need that were published while you were away.

Creation

The Session interface contains the CreateDurableSubscriber method which creates a
durable subscriber to the specified topic.

A durable subscriber MessageConsumer is created with a unique clientID and durable
subscriber name.

Only one thread can be actively consuming from a given logical topic subscriber.

10 https://jakarta.ee/specifications/messaging/2.0/apidocs/javax/jms/topicsession

36 Habari STOMP Client for ActiveMQ 9.4

Temporary Queues

Introduction

Temporary queues and temporary topics are unique destinations within a message broker,
like queues and topics, but they are only valid for the duration of a client's session. They
are dynamically created and destroyed by client applications and are not persistent after
the connection is closed. They are often used as reply-to destinations in request-response
scenarios.

The only message consumers that can consume from a temporary destination are those
created by the same connection that created the destination. Any message producer can
send to the temporary destination. If you close the connection that a temporary
destination belongs to, the destination is closed and its contents are lost.

You can use temporary destinations to implement a simple request/reply mechanism.

Library Support

Temporary destinations are supported by

+ ActiveMQ
+ OpenMQ
+ RabbitMQ

Resource Management

The session should be closed as soon as processing is completed so that
TemporaryQueues will be deleted on the server side.

Message Options 37

Message Options

Standard Properties

The Apache ActiveMQ message broker supports some JMS standard properties in the
STOMP adapter. These properties are based on the JMS specification of the Message
interface.™

Habari STOMP Client libraries for other message brokers may support a subset of these
standard properties.

Note: If your application makes use of these properties, your
application depends on a broker-specific feature which is not
guaranteed to be available in the STOMP adapter of other
message brokers

Properties for outgoing messages

JMSCorrelationID The correlation ID for the message.

JMSExpiration The message's expiration value.

IJMSDeliveryMode Whether or not the message is persistent.'?
JMSPriority*? The message priority level.

JMSReplyTo The Destination object to which a reply to this message

should be sent.

Properties for incoming messages

JMSCorrelationID The correlation ID for the message.
JMSExpiration The message's expiration value.
JMSDeliveryMode Whether or not the message is persistent.
JMSPriority The message priority level.

JMSTimestamp The timestamp the broker added to the message.

11 https://jakarta.ee/specifications/messaging/2.0/apidocs/javax/jms/message

12 For sending persistent messages please see documentation for IMessageProducer

13 Clients set the JMSPriority not directly, but either on the producer or as a parameter in the
Send method

38 Habari STOMP Client for ActiveMQ 9.4

JMSMessageld The message ID which is set by the provider.

JMSReplyTo The Destination object to which a reply to this message
should be sent.

Reserved property names

Some headers names are defined by the Stomp specifications, and by broker-specific
extensions of the Stomp protocol. These reserved Stomp header names can not be used
as names for user defined properties.

Note The client library will raise an Exception if the application tries
to send a message with a reserved property name.

Examples

e login

e passcode

e transaction

e session

e message

e destination

e id

e ack

e selector

e type

e content-length
e content-type
e correlation-id
e expires

e persistent

e priority

e reply-to

e message-id

e timestamp

e client-id

e redelivered

Message Options 39

Prefix for custom headers

A common practice to avoid name collisions is using a prefix for your own properties
(example: x-type instead of type).

Selectors

Selectors are a way of attaching a filter to a subscription to perform content based
routing. For more documentation on the detail of selectors see the reference on
javax.jmx.Message'.

Supported message brokers

Message selectors are supported by
+ Habari Client for ActiveMQ
« Habari Client for Artemis
+ Habari Client for OpenMQ

Code example

Consumer := Session.CreateConsumer (Destination, 'type=''car'' and color=''blue''');

All supported brokers allow supports string type properties and operations in selectors.
ActiveMQ also allows integer properties and operations in selectors (see special note'?).

14 https://jakarta.ee/specifications/messaging/2.0/apidocs/javax/jms/message
15 https://activemq.apache.org/components/classic/documentation/selectors

40 Habari STOMP Client for ActiveMQ 9.4

Map Messages

Introduction

A map message is used to exchange a set of name-value pairs. The names are strings,
the values are also strings (but may be textual representations of other data types).

Usage Example

Create a map message and add map entries:

MapMessage := Session.CreateMapMessage;
MapMessage.SetString('key', 'value');
MapMessage.SetInt ('key int', 4096);
MapMessage.SetBoolean ('key b', True);

Read a map message from a consumer and access its entries:

MapMessage := Consumer.Receive (1000) as IMapMessage;
StringValue := MapMessage.GetString('key'));
IntegerVale := MapMessage.GetInt('key int'));
BoolValue := MapMessage.GetBoolean('key b'));

Enumerate map entries:

MapKeys := MapMessage.GetMapNames;

for I := 0 to Length(MapKeys) - 1 do
begin
MapKey := MapKeys|[I];
MapValue := MapMessage.GetString (MapKey) ;
// process map entry
end;

Map Message Transformer

To send and receive map messagers, the application needs to convert incoming and
outgoing map messages from and to the STOMP message body.

The IMessageTransformer interface must be implemented for map message and object
message transformation. This interface defines two methods, ConsumerTransform and
ProducerTransform.

Map Messages 41

Interface

function ConsumerTransform(const Session: ISession;
const Consumer: IMessageConsumer; const AMessage: IMessage): IMessage;

function ProducerTransform(const Session: ISession;
const Producer: IMessageProducer; const AMessage: IMessage): IMessage;

Implementation guide for map messages:
1. create a class which implements the IMessageTransformer interface

o for ConsumerTransform, the incoming map message is passed as the
AMessage parameter, the method must read its body to reconstruct the map
properties, and return the map message as function result

o for ProducerTransform, the outgoing map message is passed as the AMessage
parameter, the method must write its body to store a representation of the
map, and return the map message as function result

2. create an instance of this class and register it as the message transformer on the
IConnection instance

o Note: only one map message transformer may be active for one connection

Code example

Connection := Factory.CreateConnection;
try
MyMapTransformer := TMyMapMessageTransformer.Create;

// use the helper method in unit BTConnection:
SetMapMessageTransformer (Connection, MyMapTransformer, 'my-map-message');

Connection.Start;
// send / receive messages
finally

Connection.Close;
end;

Transformation Identifier

To detect that an incoming message is a map message, it needs to carry a special header
property. Without this transformation identifier, the message will still be delivered but its
actual type will be undefined - it may arrive as a ITextMessage or IbytesMessage.

By default, the library will set this header property to the transformation identifier passed
to the SetTransfomer method.

You may explicitly set the header property on the created message:

42 Habari STOMP Client for ActiveMQ 9.4

Code example

MapMessage := Session.CreateMapMessage;
. // add map entries

// add the transformation identifiert
MapMessage.SetStringProperty (SH TRANSFORMATION, 'my-map-message');

Producer. Send (MapMessage) ;

m ProducerTransform implementation with TStrings

This implementation uses a TStrings to collect the map entries. The outgoing message
contains the TStrings as body.

Notes:

+ the method uses a method of a helper interface, IContentProvider.SetContent, to
write the body content

+ the method returns nil if the passes message is no map message

Map Messages

Code example

function TMyMapMessageTransformer.ProducerTransform(const Session: ISession;
const Producer: IMessageProducer; const AMessage: IMessage): IMessage;
var
TmpMapMsg: IMapMessage;
Keys: PMStrings;
I: Integer;
MapKey: string;
MapValue: string;
MapStrings: TStrings;
begin
Result := nil;

if Supports (AMessage, IMapMessage, TmpMapMsg) then

begin
MapStrings := TStringList.Create;
try
Keys := TmpMapMsg.GetMapNames;
for I := 0 to Length(Keys) - 1 do
begin
MapKey := Keys[I];
MapValue := TmpMapMsg.GetString (MapKey) ;
MapStrings.Values [MapKey] := MapValue;
end;

(AMessage as IContentProvider) .SetContent (Utf8Encode (MapStrings.Text));

Result := AMessage;
finally
MapStrings.Free;
end;
end;
end;

43

See unit MapMessageTransformerTests for integration / unit tests.

44 Habari STOMP Client for ActiveMQ 9.4

Object Messages

“Object serialization is the process of saving an object's state to a sequence of
bytes, as well as the process of rebuilding those bytes into a live object at some
future time.”®

Introduction

In messaging applications, object serialization is required to transfer objects between
clients, but also to store objects on the broker if they are declared persistent.

Object Message Transformer

To send and receive object messagers, the application needs to convert incoming and
outgoing object messages from and to the STOMP message body.

The IMessageTransformer interface must be implemented for map message and object
message transformation.

This interface defines two methods, ConsumerTransform and ProducerTransform.

Code example

function ConsumerTransform(const Session: ISession;
const Consumer: IMessageConsumer; const AMessage: IMessage): IMessage;

function ProducerTransform(const Session: ISession;
const Producer: IMessageProducer; const AMessage: IMessage): IMessage;

Implementation guide for map messages:
3. create a class which implements the IMessageTransformer interface

o for ConsumerTransform, the incoming object message is passed as the
AMessage parameter, the method must read its body to reconstruct the object,
and return the object message as function result

o for ProducerTransform, the outgoing object message is passed as the
AMessage parameter, the method must write its body to store a representation
of the object, and return the object message as function result

4. create an instance of this class and register it as the message transformer on the
IConnection instance

16 https://www.oracle.com/technical-resources/articles/java/serializationapi.html

Object Messages 45

o Note: only one object message transformer may be active for one connection

See unit ObjectMessageTransformerTests for integration / unit tests. |

46 Habari STOMP Client for ActiveMQ 9.4

Simplified API

New interface types

The new API'Y is based on three new interfaces which reduce the amount of client code:

+ IMQContext
« IMQProducer
+ IMQConsumer

IMQContext interface

A IMQContext object encapsulates both the IConnection and the ISession object of the
classic API. The connection factory interface contains new methods to create IMQContext
objects:

Code example

function CreateContext: IMQContext; overload;
function CreateContext (const AcknowledgeMode: TAcknowledgementMode): IMQContext;
overload;

function CreateContext (const Username, Password: string): IMQContext; overload;
function CreateContext (const Username, Password: string; const AcknowledgeMode:
TacknowledgementMode) : IMQContext; overload;

The IMQContext provides methods to create messages, producer and consumer objects,
destinations (queues, topics, temporary queues, temporary topics, durable subscribers
and so forth), and for transaction control (commit, rollback).

IMQProducer interface

A IMQProducer object provides methods to produce and send messages to the broker. As
a shortcut, a method allows to send text or bytes messages without creating ITextMessage
or IBytesMessage object by providing the text or bytes as a parameter.

17 Since version 6.0

Simplified API 47

Code example

function Send(const Destination: IDestination;

const Body: string): IMQProducer; overload;
function Send(const Destination: IDestination;
const AMessage: IMessage): IMQProducer; overload;

IMQConsumer interface

An IMQConsumer object provides methods to consume messages from the broker.

The following example is taken from the unit tests. It uses the new API to create and send
a text message to a broker queue destination, and then receives the message from this
queue.

Source code example

Code example

procedure TNewApiTests.TestSendMessage;
var

Context: IMQContext;

Destination: IQueue;

Producer: IMQProducer;

Consumer: IMQConsumer;

TextMessage: ITextMessage;

begin
Context := Factory.CreateContext;
Destination := Context.CreateQueue (GetQueueName) ;
Producer := Context.CreateProducer;

Producer.Send (Destination, 'Hello World');

Consumer := Context.CreateConsumer (Destination);
TextMessage := Consumer.Receive (2500) as ITextMessage;

CheckEquals ('Hello World', TextMessage.Text);
Context.Close;
end;

48 Habari STOMP Client for ActiveMQ 9.4

Stomp 1.2

Connection configuration

A connection string can use additional URL parameters to configure Stomp version 1.1 and
1.2

All Parameters are case sensitive.

Parameters can be omitted to use the default value.

Switch Description Default
connect.accept- Supported Stomp versions in ascending order Broker
version?'® specific, see

below
connect.host*® The name of a virtual host that the client Server URI

wishes to connect to. It is recommended
clients set this to the host name that the socket
was established against, or to any name of their
choosing. If this header does not match a known
virtual host, servers supporting virtual hosting
MAY select a default virtual host or reject the
connection.

connect.heart-beat®® Heart beat (outgoing, incoming) 0,0

Default Stomp version (broker-specific)?!

If the connection URL does not contain the connect.accept-version parameter, the client
library will add an accept-version header to the CONNECT frame with the value defined in
the SH_DEFAULT_STOMP_VERSION constant in the BTBrokerConsts unit.

Default Stomp version (BTBrokerConsts.SH_DEFAULT_STOMP_VERSION)
ActiveMQ Artemis OpenMQ RabbitMQ

1.2 1.2 1.2 1.2

18 http://stomp.github.com//stomp-specification-1.2.html#protocol negotiation

19 http://stomp.github.com//stomp-specification-1.2.htmI#CONNECT or STOMP_ Frame
20 http://stomp.github.com//stomp-specification-1.2.html#Heart-beating

21 Since version 5.1 (2017.06)

http://stomp.github.com//stomp-specification-1.2.html#Heart-beating
http://stomp.github.com//stomp-specification-1.2.html#CONNECT_or_STOMP_Frame
http://stomp.github.com//stomp-specification-1.2.html#protocol_negotiation

Stomp 1.2 49

Connection Factory Code Example:

Code example

Factory := TBTConnectionFactory.Create (
'stomp://localhost:61613?connect.accept-version=1.2&connect.heart-beat=1000,0");

This example creates a connection factory with these connection settings

host: localhost
port: 61613
accept-version: 1.2
heart-beat: 1000,0

« virtual host is localhost
« the client requests Stomp 1.2 protocol

« client heart beat interval is 1000 milliseconds, no server heart beat signals

Specification
For details see the Stomp specification pages:
http://stomp.github.com//stomp-specification-1.1.html

http://stomp.github.com//stomp-specification-1.2.html

Sending heart-beat signals

A client can use the SendHeartbeat method of the connection object to send a heart-
beat byte (newline 0x0A).

SendHeartbeat is a method of the IHeartbeat interface, which is declared in the
BTSessionIntf unit. A cast of the IConnection object is required to access this method.

Code example

(Connection as IHeartbeat) .SendHeartbeat;

http://stomp.github.com//stomp-specification-1.2.html
http://stomp.github.com//stomp-specification-1.1.html

50 Habari STOMP Client for ActiveMQ 9.4

Notes:

« the client application code is responsible for sending a heartbeat message within
the maximum interval which was specified in the connect parameter - the Habari
Client library does not send heart-beats automatically

- client messages which are sent after the heart-beat interval expires may be lost

Checking for incoming heartbeats

The client stores a time-stamp of the last incoming data. If the time which elapsed since
this time-stamp is greater than two times the heart-beat interval, calling
CheckHeartbeat will raise an exception of type EBTStompServerHeartbeatMissing.

Code example

(Connection as IHeartbeat) .CheckHeartbeat;

Notes:

« the method raises an exception if the connection does not use server-side heart-
beating

+ the method only checks the time elapsed since the last heart-beat, it does not try
to read any data from the connection

Reading server-side heartbeats

If the client never needs to consume any messages, but wants to check for incoming
(server-side) heartbeats, it can use the ReceiveHeartbeat method of the connection
object.

This method takes one argument, TimeOut.

The function returns True if it found at least one heart-beat signal on the connection.

Calling ReceiveHeartbeat is only useful for applications which never call Receive, to check
if the server is still healthy, and to consume the pending heart-beat sighals from the
connection.

If the client reads messages (using Consumer.Receive), calling ReceiveHeartbeat is not
required.

Note:

Stomp 1.2 51

CheckHeartbeat raises an exception if there is something else than a heart-beat
on the socket

52 Habari STOMP Client for ActiveMQ 9.4

Example Applications

Overview

Location

Description

common-consumertool
common-ping
common-producertool

common-producertool-
ssl

common-tests
delphichat

heartbeat-server

loadbalancing
performance
reconnect

rpc

textmessage
throughput
transactions
tutoriall
tutorial2

unicode

Receive messages from broker
Connection test tool
Send messages to broker

Send messages to broker with SSL/TLS connection

DUnit tests
Simple chat client

Uses server-side heart-beating to check the connection / server
health??

File transfer from LoadServer to LoadClient applications
Multi-threaded performance test application
Send messages and reconnect on connection failure

Use temporary queues to implement request/response style
communication (not supported on all message brokers?)

Simple text message example

Produces and consumes messages continuously
Transaction example

Tutorial one

Tutorial two

Sends and receives a Unicode message and shows it

Table 3: Example Applications (in alphabetic order)

22 Requires STOMP 1.2, which is not supported by Eclipse OpenMQ before 6.4.0
23 Requires temporary queue support, which is not available on ActiveMQ Artemis

Notes

Example Applications 53

« Unless noted otherwise, graphical programs were created using Delphi 2009

« FPCUnit tests require the latest Lazarus / Free Pascal versions, DUnit tests Delphi

2009

« Free Pascal versions of some examples are located in folders suffixed with “-fpc”

+ SSL/TLS example code is complimentary and unsupported

« Shared units for the demo applications are located in the “common folder”, they are
complimentary and unsupported

ConsumerTool

common-consumertool / common-consumertool-fpc

The ConsumerTool demo may be used to receive messages from a queue or topic. This
example application is configurable by command line parameters, all are optional.

Parameter
AckMode

Clientld

ConsumerName

Durable
MaximumMessages
Password
PauseBeforeShutDown

ReceiveTimeOut

SleepTime
Subject
Topic
Transacted
URL

User

Verbose

Default Value

Description

CLIENT_ACKNOWLEDGE ' Acknowledgment mode, possible values are:

Habari

false
10

false

0
TOOL.DEFAULT
false

false

localhost

true

Table 4: ConsumerTool Command Line Options

CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE
or SESSION_TRANSACTED

Client Id for durable subscriber

name of the message consumer - for durable
subscriber

true: use a durable subscriber
expected number of messages
Password

true: wait for key press

consume messages while they continue to be
delivered within the given time out

time to sleep after receive
queue or topic nhame

true: topic false: queue
true: transacted session
server url

user name

verbose output

54 Habari STOMP Client for ActiveMQ 9.4

BN Eingabeaufforderung — O X

821 Michael Justin
to URL:
g queue: TOOL.DEFAULT
non-durable sub
e about to wait until we HE ' } then we will shutdown
g sent at: :]

1
1
1
1
1
1
1
1
1

Illustration 1: ConsumerTool demo application

Examples

Receive 1000 messages from local broker

ConsumerTool --MaximumMessages=1000

Receive 10 messages from local broker and wait for any key

ConsumerTool --PauseBeforeShutDown

Use a transacted session to receive 10,000 messages from local broker

ConsumerTool --MaximumMessages=10000 --Transacted --AckMode=SESSION_TRANSACTED

ProducerTool

common-producertool / common-producertool-fpc

The ProducerTool demo can be used to send messages to the broker. It is configurable by
command line parameters, all are optional.

Parameter ‘ Default ‘ Description

MessageCount 10 Number of messages
MessageSize 255 Length of a message in bytes
Persistent false Delivery mode 'persistent’

SleepTime 0 Pause between messages in milliseconds

Example Applications 55

Parameter Default Description

Subject TOOL.DEFAULT Destination name
TimeTolLive 0 Message expiration time
Topic false Destination is a topic
Transacted false Use a transaction

URL localhost Message broker URL
Verbose true Verbose output

User User name

Password Password

Table 5: ProducerTool Command Line Options

BN Eingabeaufforderung — O >

Habari Client for ActiveMQ 6.12-SNAPSHOT 2088-2821 Michael Justin
Connecting to URL: stomp://1

Message with s

Using non-persistent messag

ng between publish & m

1

M M
= 3
+ rt

[1*]
=
r+

+

[1¢]
=
r+

1]
=]
+

+

m 1]
=2 33333333
+

RO DD DD DD

[1¢]
=
r+

=
5
=
=3
k=3
sen
=3
=
=3
=3
=
=3

N gy

Sending
Done.

1]
=]
+

\Users\Michael>

Illustration 2: ProducerTool demo application

Examples

Send 10,000 messages to the queue TOOL.DEFAULT on the local broker

ProducerTool --MessageCount 10000

Send 10 messages to the topic ExampleTopic on the local broker

ProducerTool --Topic --Subject=ExampleTopic

Delphi Chat

56 Habari STOMP Client for ActiveMQ 9.4

® Habari Client for Artemis 5,12-SMAPSHOT - Chat Diem 0

User Hick entered the chat l
User Tony llzntna"“"ﬂI e
User Bruce ent :

User Natasha e

Enter chat mes! User Tl:m'y' entered the chat
I: ser Bruce entered the chat

(Connected with t) | User Natasha entered the chat

F.‘*“'."'_'i User Bruce entered the chat
User Natasha entered the chat

#% Habari Client for Artemnis 6.12-SNAPSHOT - Chat Demo = O =

coter W Dscomnect]|

Connec| | User Matasha entered the chat

| %

Connected with topic ExampleTopic as user Matasha

The Delphi Chat application uses a Topic destination as a ‘chat room’ where many users
may send messages, which then will be shown in all clients which consume messages
from this topic.

Performance test

#% Habari Client for ActiveMQ 7.1 performance test appli...

Broker address (click to configure)

Example Applications

a

x

|5.t|:|r'r1p:_a’_e’||:|ca|h|:ust

Murnber of messages to send:

)

Payload length:

'....J.

Mumber of threads:

' J

Create 4 sender and receiver threads for 1000 |
messages each (payload 480 bytes) '

Compiler version: 20,00

Illustration 3: Performance test example application
The performance test application provides a GUI for multi-threaded sending and receiving

of messages.

+ A broker configuration dialog can be invoked by clicking the URL field
« Number and length of messages and thread number can be adjusted using the

sliders

For every thread a message queue with the name ExampleQueue.<n> will be used

PingBroker

57

58 Habari STOMP Client for ActiveMQ 9.4

PingBroker - Habari Client for ActiveMO 7.1 >

Broker |I|:u:a|h|:|stl

Part |61613

Passwaord ||:|ass'.-".'|:|ru:|

Username |user |

VHost |'-;Hnst

URL | stomp:/flocalhost

Copy connection LRI to dipboard

Illustration 4: PingBroker example application

This graphical tool tries to create a Stomp connection to the specified message broker.

Throughput test

This example application is configurable by command line parameters, all are optional.

Parameter Default Value Description
Password (broker-specific) Password
Subject ExampleTopic Topic name
URL (broker-specific) Connection URL
User (broker-specific) User name

Table 6: Throughput Test Tool Command Line Options

Examples

Use remote broker 'mybroker' and specify user and password

tptest --url=stomp://mybroker --user=testl --password=secret

Example Applications 59

BA Eingabeaufforderung - "C:\Users\Michael\Documents\Habari Client libraries\Habari ActiveMQhtarget\demotthroughput'... — O *
Habari Client for ActiveMQ 6 (c) 28088-2821 Michael Justin
Consuming: mpleTopic

ss CtrlH

&

A AoWnon
A A Wi

Wownowowm

e
e
e
e
e
e
e
e
e
e
e

Illustration 5: Throughput test tool output

60 Habari STOMP Client for ActiveMQ 9.4

Unit Tests

Introduction

Habari STOMP Client libraries include DUnit and FPCUnit tests. They require the classic
DUnit framework (included in Delphi 2009) or FPCUnit (included in Lazarus 2.0.12).

The test projects are installed in the common-tests and common-tests-fpc folders.

Test project configuration

Logging

To switch on SLF4P logging, add the conditional symbol HABARI_LOGGING (see chapter
‘Logging with SLF4P") and rebuild the project. Set the DEFAULT_LOG_LEVEL constant in
unit TestHelper to a valid SLF4P level.

Optional units

To switch on tests for optional units (object message exchange), add the conditional
symbol HABARI_TEST_OPTIONAL_UNITS and rebuild the project.

Test units

The common-tests folder contains these units

Test setup and test case base classes

TestHelper Main test set-up and utility unit, contains no tests
HabariTestCase Test case base classes used for most tests

Unit tests

ApiTests Tests Habari Client core API methods - part 1
BasicTests Tests Habari Client core API methods - part 2

BrokerExtensionsTests Tests broker-specific features and extensions of the STOMP

Unit Tests 61

protocol
HabariExtensionsTests Tests non-standard features provided by the Habari Client library
HabariTypesTests Tests internal data types
ObjectExchangeTests** Tests object message exchange (for Delphi DUnit only)
Stomp12Tests Tests features introduced with version 1.2 of the STOMP standard

StubServerTests Tests using a simple local Stomp server

Free Pascal specific test units are in the folder common-tests-fpc

Test execution

Requirements

The test projects require a message broker running on the local system, which accepts
STOMP connections on the default port, with the default user credentials. User name and
password for the default user are defined in unit BTBrokerConsts.

Test destinations

Most tests create a test-specific destination (queue or a topic) to reduce the risk of side
effects.

The name of the destination is the combination of the test class name and the unit test
name.

Note: the unit tests will not clean up or remove these destination objects after usage.

STOMP 1.2

Since Habari STOMP Client for ActiveMQ 5.0, the unit test use STOMP 1.2 for connections.

24 only added to the test suite if TEST_OPTIONAL_UNITS is defined

62 Habari STOMP Client for ActiveMQ 9.4

Logging with SLF4P

Introduction

Habari STOMP Client libraries include the open source “simple logging facade for Pascal”
(SLF4P) as an optional dependency. SLF4P is available at
https://github.com/michaellustin/sif4p

IDE and project configuration

In order to compile with SLF4P support,

1. include the path to the sIf4p library in the project search or in the global library
path

2. add the conditional symbol HABARI_LOGGING to the project options

Delphi
choose Project | Options... | Delphi Compiler > Conditional defines
add HABARI_LOGGING

Lazarus

choose Project | Project Options ... | Compiler Options > Other
add -dHABARI_LOGGING in the Custom options field

LoggingHelper unit

A simple LoggingHelper unit is located in the demo\common\ directory and can be copied to
a project to add slf4p support with little extra coding.

https://github.com/michaelJustin/slf4p

Logging with SLF4P 63

Code example

uses
LoggingHelper,

begin
// set up logging
LoggingHelper.ConfigurelLogging;

The LoggingHelper unit may be adjusted to your configuration needs. Here is an example
which uses the SimpleLogger implementation (included in SLF4P).

Code example

unit LoggingHelper;
interface

uses
{SIFDEF HABARI_LOGGING}
djLogOverSimpleLogger, SimplelLogger
{SENDIF HABARI_LOGGING};

const
DEFAULT LOG LEVEL = 'info';

procedure ConfigureLogging(const LogLevel: string = DEFAULT LOG LEVEL);
implementation

procedure ConfigurelLogging (const LogLevel: string);
begin
{SIFDEF HABARI LOGGING}
SimpleLogger.Configure ('defaultLogLevel', LogLevel);
SimpleLogger.Configure ('showDateTime', 'true');
{SENDIF HABARI LOGGING}
end;

end.

64 Habari STOMP Client for ActiveMQ 9.4

Conditional Symbols

Experimental or optional features

All conditional symbols enable experimental or optional features, which are not
covered by the free basic support plan.

Feedback (suggestions for improvements, feature requests, and bug reports) are always
welcome.

HABARI_ALLOW_UNKNOWN_URL_PARAMS

Disables strict connection URL parameter checking.

A message broker may support proprietary headers in STOMP frames (for example in
SUBSCRIBE frames). By default, the library only accepts well-known connection
parameters, and raises an exception for unknown parameters. If this symbol is defined,
connection URLs may contain arbitrary parameters.

HABARI_ENABLE_FAILOVER_PROTOCOL

Enables Failover protocol support.

When enabled, the Failover transport randomly chooses one of the composite URI and
attempts to establish a connection to it.

See also: Failover Protocol Support

HABARI_LOGGING

Enables logging support.
Requires the open source SLF4P logging facade.
See also: Logging with SLF4P

HABARI_SSL_SUPPORT
Enables SSL/TLS support.

The directory source/optional contains example implementations of Indy and Synapse
adapter classes with OpenSSL support.

Please note that these are basic implementations and not supported in the free basic
support plan.

See also: SSL/TLS Support

SSL/TLS Support 65

SSL/TLS Support

SSL communication adapter classes

Habari STOMP Client for ActiveMQ includes two experimental adapter classes for usage
with OpenSSL, one for Indy (Internet Direct) and one for Synapse. The units for these
classes are in the source\optional folder.

Adapter Class Unit
TBTCommAdapterIndySSL BTCommAdapterIndySSL
TBTCommAdapterSynapseSSL BTCommAdapterSynapseSSL

Table 7: Communication Adapters with SSL/TLS Support

Mixed Use

It is possible to use SSL and non-SSL connections in the same project:
« connections with the “stomp://” scheme will remain unencrypted

+ connections with the “stomp+ssl://” scheme will use SSL

SSL configuration

The TBTCommAdapterIndySSL class includes very basic configuration of the Indy SSL
handler. Your server or your specific security requirements may require additional
configuration.

Indy SSL Demo

A demo application is included in common-producertool-ssl.

66 Habari STOMP Client for ActiveMQ 9.4

Code example
program ProducerToolIndySSL;

{$SAPPTYPE CONSOLE}

uses
// the Habari Client adapter class for Indy + SSL
BTCommAdapterIndySSL,
// required to set the default adapter

BTAdapterRegistry,
// the common demo unit for the producer tool
ProducerToolUnit in '..\common-producertool\ProducerToolUnit.pas',
// configuration support unit
CommandLineSupport in '..\common\CommandLineSupport.pas',
SysUtils;

begin

BTAdapterRegistry.SetDefaultAdapter (TBTCommAdapterIndySSL) ;

with TProducerTool.Create do
try
try
Run;
except
on E:Exception do WritelLn (E.Message) ;
end
finally
Free;
end;
ReadLn;
end.

Notes

+ the TBTCommAdapterIndySSL class must be registered using
(BTAdapterRegistry.SetDefaultAdapter(TBTCommAdapterIndySSL)

+ the project must be compiled with HABARI_SSL_SUPPORT
« the connection URL must be in the form “stomp+ssl://server.com:sslport”
- the OpenSSL libraries must be in the application search path

Troubleshooting

Changed PassThrough mode default since Delphi 10.4

Indy supports PassThrough mode, which is related to receiving non-encrypted data on a
SSL/TLS connection. With Delphi 10.4, Indy seems to assume PassThrough = True, while
Indy in older Delphi versions assumes PassThrough = False. See
https://github.com/IndySockets/Indy/issues/372: /
https://quality.embarcadero.com/browse/RSP-29900

The solution in newer Delphi version was to explicitly set the IOHandler PassThrough :=
False.

https://quality.embarcadero.com/browse/RSP-29900
https://github.com/IndySockets/Indy/issues/372

Example output

Habari Client for RabbitMQ 5.1.0
Connecting to URL:

(c)

Using persistent messages

Sleeping between publish 0 ms
313 INFO habari.TBTCommAdapterIndySSL -
313 INFO habari.TBTCommAdapterIndySSL -
1ford/0=COMODO CA Limited/CN=COMODO RSA
313 INFO habari.TBTCommAdapterIndySSL -
313 INFO habari.TBTCommAdapterIndySSL -
313 INFO habari.TBTCommAdapterIndySSL -
1ford/0O=COMODO CA Limited/CN=COMODO RSA
313 INFO habari.TBTCommAdapterIndySSL -
329 INFO habari.TBTStompClient -

Sending message: Message: 0 sent at: 28.
Sending message: Message: 1 sent at: 28.
Sending message: Message: 2 sent at: 28.
Sending message: Message: 3 sent at: 28.
Sending message: Message: 4 sent at: 28.
Sending message: Message: 5 sent at: 28.
Sending message: Message: 6 sent at: 28.
Sending message: Message: 7 sent at: 28.
Sending message: Message: 8 sent at: 28.
Sending message: Message: 9 sent at: 28.
Done.

Connected

SSL/TLS Support

2008-2017 Michael Justin
stomp+ssl://localhost:61614
Publishing a Message with size 255 to queue:

ExampleQueue

Verifying SSL certificate
Issuer: /C=GB/ST=Greater Manchester/L=Sa
Domain Validation Secure Server CA
Not After: 09.04.2018 01:59:59
Verifying SSL certificate
Issuer: /C=GB/ST=Greater Manchester/L=Sa
Domain Validation Secure Server CA
Not After: 09.04.2018 01:59:59
with RabbitMQ/3.6.10 using STOMP 1.2
06.2017 10:26:43 Ce
06.2017 10:26:43
06.2017 10:26:43
06.2017 10:26:43
06.2017 10:26:43
06.2017 10:26:43
06.2017 10:26:43
06.2017 10:26:43
06.2017 10:26:43
06.2017 10:26:43

67

Support

Support for SSL/TLS connections and the example adapter classes is not included in the

basic support package of Habari STOMP Client for ActiveMQ.

68 Habari STOMP Client for ActiveMQ 9.4

Failover Protocol Support

The Failover transport layers reconnect logic on top of the Stomp transport.®

The Failover configuration syntax allows you to specify any number of composite URIs.
The Failover transport randomly chooses one of the composite URI and attempts to
establish a connection to it. If it does not succeed, a new connection is established to one
of the other URIs in the list.

Example for a failover URI:

failover:(stomp://primary:61613,stomp://secondary:61613)

Requirements

To enable support of the failover protocol, the project must be built with the conditional
symbol HABARI_ENABLE_FAILOVER_PROTOCOL set.

Failover Transport Options

Option Name Default Description
Value
initialReconnectDelay 10 How long to wait before the first reconnect attempt
(in ms)
maxReconnectDelay 30000 The maximum amount of time we ever wait between

reconnect attempts (in ms)

backOffMultiplier 2.0 The exponent used in the exponential backoff
attempts
maxReconnectAttempts -1 -1 is default and means retry forever, 0 means don't

retry (only try connection once but no retry)

If set to > 0, then this is the maximum number of
reconnect attempts before an error is sent back to the
client

randomize true use a random algorithm to choose the the URI to use
for reconnect from the list provided

Table 8: Failover Transport Options

25 https://activemq.apache.org/components/classic/documentation/failover-transport-
reference

Failover Protocol Support 69

Example URI:

failover:(stomp://localhost:61616,stomp://remotehost:61616)?
initialReconnectDelay=100&maxReconnectAttempts=10

Code example

Factory := TBTConnectionFactory.Create('failover: (stomp://primary:61616,stomp://
localhost:61613) ?maxReconnectAttempts=3&randomize=false') do
try

Conn := Factory.CreateConnection;

Conn.Start;

Conn.Stop;
finally

Conn.Close;
end;

/70 Habari STOMP Client for ActiveMQ 9.4

Useful Units

BTStreamHelper unit

This unit contains the procedure LoadBytesFromStream which can be used to read a file
into a BytesMessage.

Code example

// create the message
Msg := Session.CreateBytesMessage;

// open a file
FS := TFileStream.Create('filename.dat', fmOpenRead);

try
// read the file bytes into the message
LoadBytesFromStream (Msg, FS);

Size := Length (Msg.Content);

// display message content size
WriteLn (IntToStr (Size) + ' Bytes');

finally
// release the file stream
FS.Free;

end;

BTJavaPlatform unit

This unit contains some helper functions for Java dates. Java dates are Int64 values based
on the Unix date.

function JavaDateToTimeStamp (const JavaDate: Int64): TDateTime;

function TimeStampToJavaDate (const TimeStamp: TDateTime): Int64;

Library Limitations 71

Library Limitations

MessageConsumer

How do I implement synchronous receive from multiple
destinations?

The library does not support synchronous receive from more than one destination over a
single connection.

To receive messages synchronously (using Receive and ReceiveNoWait) from two or more
destinations, create one connection per destination.

Background: all pending messages in a connection are serialized in one TCP stream, so
reading only the messages which come from one of the destinations would require
'skipping' all messages for other destinations.

Message properties

Only string data type supported by Stomp

The STOMP protocol uses string type key/value lists for the representation of message
properties. Regardless of the method used to set message properties, all message
properties will be interpreted as Java Strings by the Message Broker.

As a side effect, the expressions in a Selector are limited to operations which are valid for
strings.

Timestamp properties are converted to a Unix time stamp value, which is the internal
representation in Java. But still, these values can not be used with date type expressions.

Broker-specific exceptions
Apache ActiveMQ 5.6 introduced support for numeric expressions in JMS selectors.

Multi threading

A session supports transactions and it is difficult to implement transactions that are multi-
threaded; a session should not be used concurrently by multiple threads.

/2 Habari STOMP Client for ActiveMQ 9.4

Free Pascal specific restrictions

the library has only been tested on the Windows platform

the included unit test project uses FPCUnit for Free Pascal / Lazarus instead of
DUnit

the complimentary code for map and object messages do not support Free Pascal
the library source code uses the Delphi mode switch {$MODE DELPHI}
other limitations or restrictions may apply

Broker-specific limitations

Transacted Sessions

Transactional acknowledging

The STOMP implementations of Artemis and OpenMQ message broker do not support
transactional acknowledging of incoming messages.

Other broker specific limitations

For broker-specific notes, please read chapter Broker-specific notes.

Frequently Asked Questions

Frequently Asked Questions

Technical questions

Why am I getting 'undeclared identifier
IndyTextEncoding_UTF8'?

Short answer
Your Indy version is too old.

Long answer
The library requires a current Indy 10.6.2 version.

Solution
Please download a newer Indy version.

Why am I getting ‘Undeclared identifier: 'TimeSeparator'’?

Short answer
Your Synapse version does not support your version of Delphi

Long answer

Delphi XE4 removed twenty deprecated global variables. For more details, see
http://docwiki.embarcadero.com/RADStudio/XE4/en/Global Variables.

Solution
Either use Internet Direct (Indy) or use a compatible version of Synapse.

Why am I getting 'Found no matching consumer' errors?

Short answer

The client closed a consumer while there still were pending messages on the wire for it,
and then tried to receive the pending messages with a new consumer.

Long answer
If the client subscribes to a destination, it creates a unique subscription identifier and

73

passes it to the broker. Messages which the broker sends to the client always include this

http://docwiki.embarcadero.com/RADStudio/XE4/en/Global_Variables

/4 Habari STOMP Client for ActiveMQ 9.4

subscription identifier in their header properties. The client verifies that the subscription id
in the incoming message has the same id as the consumer.

If the client closes the consumer before all messages waiting on the wire have been
consumed, and creates a new subscription (which has a new unique id), the remaining
messages which are waiting on the wire, will have a subscription id which does not match
the id of the new subscription. The client will raise an exception if ho matching consumer
can be found.

Solution

Do not create another consumer on the same connection while there are still pending
messages for the first consumer. To discard all pending messages which are still waiting on
the wire, the client can simply close the close the connection and create a new consumer
on a new connection.

Example
Here is a small code example which causes this error®:

Code example

procedure TErrorHandlingTests.TestReceiveMessageForOtherSubscription;
var

Factory: IConnectionFactory;

Conn: IConnection;

Session: ISession;

Destination: IDestination;

Producer: IMessageProducer;

Consumer: IMessageConsumer;

Msg: IMessage;

begin
Factory := TBTConnectionFactory.Create;
Conn := Factory.CreateConnection;
Conn.Start;
Session := Conn.CreateSession (amAutoAcknowledge) ;
Destination := Session.CreateQueue (GetQueueName) ;
Consumer := Session.CreateConsumer (Destination);
Producer := Session.CreateProducer (Destination);
Msg := Session.CreateMessage;

Producer.Send (Msqg) ;
Consumer.Close;

Consumer := Session.CreateConsumer (Destination);
Consumer.Receive (1000) ;
end;

In line 20 and 21, the consumer is closed and a new consumer created for the same
destination.

The Receive in line 22 will detect that the incoming message does not have a matching
consumer id and raise an ElllegalStateException.

Does the library support non-Unicode Delphi versions?

Short answer
No, the library does not support non-Unicode Delphi versions.

26 This code example is included in the library unit test project

Frequently Asked Questions 75

Long answer

The library makes uses of language features which have been added in Delphi 2009 / Free
Pascal 3.2.0. Support for non-Unicode Delphi ended in April 2017.

How can the client application detect network connection
loss?

Short answer
Use Stomp heart-beating

Long answer
By enabling heart-beating, the client can request server -side sending of heart beat bytes.

Even if the client only wants to consume messages and never send messages, the server
should continuously send heart-beat bytes within the negotiated time.

To detect if the server has sent a heart-beat, the client calls the method ReceiveHeartbeat.

For more details, please check the paragraph “Reading server-side heartbeats” on page
50.

/6 Habari STOMP Client for ActiveMQ 9.4

Online Resources

Third-party libraries

Indy

Indy is an open source client/server communications library that supports TCP/UDP/RAW
sockets, as well as over 100 higher level protocols including SMTP, POP3, IMAP, NNTP,
HTTP, FTP, and many more. Indy is written in Delphi but is available for C++Builder,
Delphi, and FreePascal.

Project home https://www.indyproject.org/

GitHub https://github.com/IndySockets

Ararat Synapse

Project home http://synapse.ararat.cz

GitHub https://github.com/geby/synapse

Synopse mORMot

Project home https://synopse.info/

GitHub https://github.com/synopse/mORMot
https://github.com/synopse/mORMot2

DUnit

Project home https://dunit.sourceforge.net/

Source https://sourceforge.net/projects/dunit/files/dunit/9.3.0/
SLF4P

Smple logging facade for Object Pascal

https://sourceforge.net/projects/dunit/files/dunit/9.3.0/
https://dunit.sourceforge.net/
https://github.com/synopse/mORMot2
https://github.com/synopse/mORMot
https://synopse.info/
https://github.com/geby/synapse
http://synapse.ararat.cz/
https://github.com/IndySockets
https://www.indyproject.org/

Online Resources 77

Project home https://github.com/michaellustin/sIf4p

JsonDataObjects

GitHub https://github.com/ahausladen/JsonDataObjects

Specifications

Stomp - Simple (or Streaming) Text Oriented Messaging

Protocol®’

Stomp home https://stomp.github.io/index.html

Stomp 1.2 https://stomp.github.io/stomp-specification-1.2.html
Stomp 1.1 https://stomp.github.io/stomp-specification-1.1.html
Stomp 1.0 https://stomp.github.io/stomp-specification-1.0.html

Broker-specific Stomp documentation

ActiveMQ https://activemg.apache.org/components/classic/documentation/
stomp
Artemis https://activemg.apache.org/components/artemis/documentation/

latest/stomp.html

RabbitMQ https://www.rabbitmg.com/stomp.html

Online articles

Title Broker
Firebird Database Events and Message-oriented Middleware?® All
Discover ActiveMQ brokers with Delphi XE4 and Indy 10.6%° ActiveMQ

27 https://en.wikipedia.org/wiki/Streaming Text Oriented Messaging Protocol

28 https://mikejustin.wordpress.com/2012/11/06/firebird-database-events-and-message-
oriented-middleware/

29 https://mikejustin.wordpress.com/2013/07/07/discover-activemqg-brokers-with-delphi-xe4-
and-indy-10-6/

https://mikejustin.wordpress.com/2013/07/07/discover-activemq-brokers-with-delphi-xe4-and-indy-10-6/
https://mikejustin.wordpress.com/2013/07/07/discover-activemq-brokers-with-delphi-xe4-and-indy-10-6/
https://mikejustin.wordpress.com/2012/11/06/firebird-database-events-and-message-oriented-middleware/
https://mikejustin.wordpress.com/2012/11/06/firebird-database-events-and-message-oriented-middleware/
https://www.rabbitmq.com/stomp.html
https://activemq.apache.org/components/artemis/documentation/latest/stomp.html
https://activemq.apache.org/components/artemis/documentation/latest/stomp.html
https://activemq.apache.org/components/classic/documentation/stomp
https://activemq.apache.org/components/classic/documentation/stomp
https://stomp.github.io/stomp-specification-1.0.html
https://stomp.github.io/stomp-specification-1.1.html
https://stomp.github.io/stomp-specification-1.2.html
https://stomp.github.io/index.html
https://en.wikipedia.org/wiki/Streaming_Text_Oriented_Messaging_Protocol
https://github.com/ahausladen/JsonDataObjects
https://github.com/michaelJustin/slf4p

/8 Habari STOMP Client for ActiveMQ 9.4

How to use the RabbitMQ Web-Stomp Plugin®°

RPC with Delphi client and Java server using RabbitMQ?*!

Online Videos

Title

Introduction to Messaging With Apache ActiveMQ?**

GlassFish Message Queue - High Availability Clusters??

RabbitMQ
RabbitMQ

Broker
ActiveMQ

OpenMQ

30 https://mikejustin.wordpress.com/2013/11/27/how-to-use-the-rabbitmg-web-stomp-

plugin-with-delphi-and-free-pascal/

31 https://mikejustin.wordpress.com/2013/05/21/rpc-with-delphi-client-and-java-server-

using-rabbitmg/
32 http://vimeo.com/12654513
33 https://www.youtube.com/watch?v=RHUJBsy3udU

https://www.youtube.com/watch?v=RHUJBsy3udU
http://vimeo.com/12654513
https://mikejustin.wordpress.com/2013/05/21/rpc-with-delphi-client-and-java-server-using-rabbitmq/
https://mikejustin.wordpress.com/2013/05/21/rpc-with-delphi-client-and-java-server-using-rabbitmq/
https://mikejustin.wordpress.com/2013/11/27/how-to-use-the-rabbitmq-web-stomp-plugin-with-delphi-and-free-pascal/
https://mikejustin.wordpress.com/2013/11/27/how-to-use-the-rabbitmq-web-stomp-plugin-with-delphi-and-free-pascal/

Support 79

Support

Bug reports and support inquiries

Please send bug reports and support inquiries to Habarisoft and specify your message
broker type and version.

To allow fast processing of your inquiry, please provide a detailed problem description,
including configuration and environment, or code examples which help to reproduce the
problem.

Advanced support

Advanced and experimental features such as (for example) SSL/TLS, third party libraries,
Free Pascal, Linux, non-Unicode Delphi versions and message broker configuration are not
covered by the basic support scheme.

80 Habari STOMP Client for ActiveMQ 9.4

Broker-specific notes

Authentication plugin

To enable a simple authentication plugin, add these lines to the <plugins> element in the
broker configuration:

<simpleAuthenticationPlugin>
<users>
<authenticationUser username="system" password="manager"
groups="users,admins"/>
<authenticationUser username="user" password="password"
groups="users"/>
<authenticationUser username="guest" password="password" groups="guests"/>
</users>
</simpleAuthenticationPlugin>

Subscription options

As documented on http://activemqg.apache.org/stomp.html, ActiveMQ supports broker-
specific arguments which can be passed with the STOMP SUBSCRIBE command.

These arguments can be passed in the CreateQueue command.

Code example

Session.CreateQueue ('myqueue?activemg.prefetchSize=1");

This will add the header activemq.prefetchSize=1 to the SUBSCRIBE frame.

Selectors

Using numeric selectors to filter messages

Apache ActiveMQ 5.6 introduced support for numeric expressions in selectors. See
http://activemqg.apache.org/selectors.html for STOMP-specific requirements to support
numeric selectors.

34 https://issues.apache.org/jira/browse/AMQ-1609

http://activemq.apache.org/selectors.html
https://issues.apache.org/jira/browse/AMQ-1609
http://activemq.apache.org/stomp.html

Broker-specific notes 81

Object Messages

Object Serialization

Object serialization is the process of saving an object's state to a sequence of bytes, as
well as the process of rebuilding those bytes into a live object at some future time.>> In
messaging applications, object serialization is required to transfer objects between clients,
but also to store objects on the broker if they are declared persistent.

ActiveMQ supports object exchange between Java and non-Java clients using a Message
Transformation between native Java objects and XML or JSON serialized objects.?®

“Delphi Only” vs. “"Cross-Language” Object Exchange

Habari Client for ActiveMQ offers two object exchange methods.

Cross-Language Objects on the broker are encoded using Java binary
serialization. The Delphi application sends a JSON or XML
serialized object to the broker, who transforms it into a binary
serialized Java object first before it can be consumed by JMS
clients. This broker-side transformation requires that Java class
files for the class are in the broker's class path.

Delphi Only Objects on the broker are encoded using JSON or XML.
The message broker exchanges the objects between Delphi
(and other) clients serialized as JSON or XML text, no special
Java support files are required.

“Cross-Language” Object Exchange

On the Java side, a Java client application does not need any special preparation to send
and receive objects over ActiveMQ. The JMS API support for ObjectMessage provides all
necessary methods, a session uses

Session#createObjectMessage (Serializable object)? to create the message (passing
a Java object as argument) which then can be sent and received just like a TextMessage
or BytesMessage.

However, for the message transformation to and from JSON or XML, this object exchange
methods requires that a JAR containing a matching Java class file has to be deployed in
the message broker, which will be used by the brokers message transformer. If this Java
class is not compatible with the JSON or XML structure, the message transformation fails!

Pros

« Java clients do not need any special modifications to exchange objects with non-
Java clients, Delphi clients can be connected ('plugged in') / integrated easily with
an existing JMS infrastructure

35http://java.sun.com/developer/technicalArticles/Programming/serialization/

36 http://activemqg.apache.org/message-transformation.html

37 http://download.oracle.com/javaee/1.4/api/javax/ims/
Session.html#createObjectMessage%28java.io.Serializable%29

http://download.oracle.com/javaee/1.4/api/javax/jms/Session.html#createObjectMessage(java.io.Serializable)
http://download.oracle.com/javaee/1.4/api/javax/jms/Session.html#createObjectMessage(java.io.Serializable)
http://activemq.apache.org/message-transformation.html
http://java.sun.com/developer/technicalArticles/Programming/serialization/

82 Habari STOMP Client for ActiveMQ 9.4

« Serialization from / to objects is performed on the server

« Serialization only occurs 'on demand' when the non-Java client reads or writes
messages

Cons

+ Requires installation of a JAR file in the message broker which contains the Java
class (unless the class is already in the brokers classpath)

+ The transformation fails if the Java class and Delphi class declaration don't match

« The transformation fails if the Delphi and Java transformer libraries (JSON / XML)
are not compatible

“Delphi Only” Object Exchange

There are almost no differences of the Delphi code for “Cross-Language” and “Delphi Only”
object exchange methods.

Switching to “Delphi Only” object exchange requires only an additional property
assignment on the object message.

The serialized objects will be stored in the messages broker as TextMessage instances.
The XML or JSON text can be retrieved by a JMS Java client application just like any other
JMS TextMessage. Java clients can use a JSON or XML parser to read the message
content.

Pros
+ Simple usage, no JAR installation required

« Java JMS client applications are still able to receive the serialized objects - they will
appear as TextMessage instances, containing the JSON or XML text

Cons

« Deserialization of JSON or XML serialized Delphi objects to Java objects requires a
decoder library (XStream or Jettison) on the Java client side

Memory Management

Outgoing Objects
The message transformer will not free objects which have been sent. To release the
memory, the application has to explicitly free them when they are no longer used.

Incoming Objects

The message transformer will create an object instance when an object message has been
received. To avoid memory leaks, the application must free this instance when it is no
longer in use.

Broker-specific notes 83

Broker Specific Demos

Directory
activemqg-advisory
activemqg-schedule
activemgq-statistics
jms-mapmessage
jms-objectmessage

loadbalancing

Description
Example for advisory messages.
Example code for “Delay and Schedule Message Delivery” (p. 86).

Example code for “Broker Statistics Example” (p. 84)

The LoadServer application will connect with ActiveMQ on localhost and create
a directory for outgoing files. Copy a file to the files directory. The application
will now send it every five seconds to a ActiveMQ queue, including the file
name, file size and a sequence number. (For safety reasons in this demo, the
file will not be deleted.)

The LoadClient application will connect with ActiveMQ and create a directory
for incoming files. If the application finds a file, it will be downloaded with a
filename including a time stamp.

If you start the application multiple times, ActiveMQ will distribute the files to all
running clients.

Requires Jedi Code Library (JCL)

Table 9: Advanced Demo Applications

84 Habari STOMP Client for ActiveMQ 9.4

Broker Statistics Example

ActiveMQ supports Broker plugins, which allows the default functionality to be extended,
and new with version 5.3 of Apache ActiveMQ is a Statistics plugin, which enables
statistics about the running broker, or Queues and Topics to be queried.

The statistics plugin looks for messages sent to particular destinations. To query the
running statistics of a the message broker, send an empty message to a Destination
(Queue or Topic) named ActiveMQ.Statistics.Broker, and set the JMSReplyTo field with
the Destination you want to receive the result on. The statistics plugin will send a
IMapMessage filled with the statistics for the running ActiveMQ broker.

Similarly, if you want to query the statistics on a Destination, send a message to the
Destination name, prepended with ActiveMQ.Statistics.Destination. For example, to
retrieve the statistics on a Queue named test.foo send an empty message to the Queue
ActiveMQ.Statistics.DestinationTest.Foo.

You can also use wildcards too, and receive a separate message for every destination
matched.

Configuration

To configure ActiveMQ to use the statistics plugin, add the following to the ActiveMQ XML
configuration:

<plugins>
<statisticsBrokerPlugin/>
</plugins>

Example Output

When launched with parameter example.A, the demo application activemq-statistics will
retrieve the information for queue example.A, and the output would look similar to this:

Broker-specific notes 85

Request statistics for ActiveMQ.Statistics.Destinationexample.A ...
memoryUsage=0

dequeueCount=0

inflightCount=0

messagesCached=0
averageEnqueueTime=0.0
destinationName=queue://example.A
size=0

memoryPercentUsage=0
producerCount=0

consumerCount=1
minEnqueueTime=0.0
maxEnqueueTime=0.0
dispatchCount=0

expiredCount=0

enqueueCount=0
memorylLimit=67108864

Press any key

Without a parameter, broker statistics will be returned:

86 Habari STOMP Client for ActiveMQ 9.4

Request statistics for ActiveMQ.Statistics.Broker ...
vm=vm://localhost

memoryUsage=0

storeUsage=66434225

tempPercentUsage=0

openwire=tcp://mj-PC:61616
brokerId=ID:mj-PC-52958-1272975061672-0:0
consumerCount=3

brokerName=localhost

expiredCount=0

dispatchCount=2

maxEnqueueTime=3.0

storePercentUsage=0

dequeueCount=2

inflightCount=0

messagesCached=0

tempLimit=107374182400

averageEnqueueTime=1.5

memoryPercentUsage=0

size=0

tempUsage=0

producerCount=0

minEnqueueTime=0.0
dataDirectory=C:\Java\apache-activemqg-5.3.1\data
enqueueCount=64
stomp=stomp://mj-PC:61613?transport.closeAsync=false
storeLimit=107374182400

memorylLimit=67108864

Press any key

Delay and Schedule Message Delivery

Apache ActiveMQ from version 5.4 has a persistent scheduler built into the ActiveMQ
message broker. An ActiveMQ client can take advantage of a delayed delivery by using
message properties.®®

By setting properties of the message, a client can

+ set the time in milliseconds that a message will wait before being scheduled to be
delivered by the broker

- set the time in milliseconds to wait after the start time to wait before scheduling the
message again

« set the number of times to repeat scheduling a message for delivery

« Or use a cron entry (for example “0 * * * *” to set the schedule

The example application shows how a message can be scheduled for delivery after 5
seconds.

To enable the scheduler, the broker element in the configuration file needs to include the
schedulerSupport attribute set to true.

38 http://activemg.apache.org/delay-and-schedule-message-delivery.html

http://activemq.apache.org/delay-and-schedule-message-delivery.html

Connection troubleshooting 87

Connection troubleshooting

Performance demo

Socket error 10060 (Connection timed out)

If the specified host is unreachable, a ,Connection timed out” error will occur.

Socket error 10061 (Connection refused)

If the broker service is not running on the specified host and port, a ,Connection refused”
error will occur:

Broker LIRL |sb:um|:u:f,.'1oca|hu:ust:6 1612

(=g |user Habari Client for ActiveMQ £.12-5MAPSHOT performance test applicat..

Password passwo

The connection has failed due to a transport problem: Socket Error 2 10061
Connection refused.

Test conne
| | |

The default port for STOMP on ActiveMQ is 61613.
The port can be specified in the Broker URI:

Broker URL |sb:um|:u:fﬂocalhost:6 1613

User |l.|ser . i
Habari Client for ActiveQ 6....

Password |passwnrd
Connected with ActivelM(/3.16.3

Test connection Ok Cancel

88 Habari STOMP Client for ActiveMQ 9.4

Socket error 10054 (Connection reset by peer)

Broker URL |sb3mp:ﬂlocalhost: 5672

User |user

Password |pas papari Client for ActiveMQ 6.12-SNAPSHOT performance test application s

The connection has failed due to a transport problem: Connection Closed Gracefully.

Testo

If the broker service is running on the specified host and port, but the port does not
accept STOMP client connections, a ,,Connection Closed Gracefully” error will occur.

For example, the ActiveMQ server will allow only OpenWire connections on port 5672.

Index

Reference

Broker Statistics.......covviiiiiiiiiiiiiin, 84
BTBrokerConsts......ccoviiviiiiiiiiiiiiiinnnns 61
BTCommAdapterIndy.......covvvvvviinnnnnnen. 24
BUg reportS.. v 79
CheckHeartbeat..........ccoooviiiiiii 50
Connect.accept-version..........coevvvinnennns 48
Connect.heart-beat...........cccoviiiiiiinnns 48
Connect.host....oooeiiiii 48
Conneclion......ccoevvviiiiiiie e 13, 25
Connection URL.......ccovvvviiiiiiii s 25
ConnectionFactory.........ccoovvviieennnnn. 13, 24
CreateDurableSubscriber..............covih 35
CredentialS......c.covviiiiiiiiiiiiiieeas 61
Destination.........cooviiiiiiiii 30
D10 o V| P 8, 60
EBTStompServerHeartbeatMissing......... 50
ElllegalStateException........c.ccvvevvinnnnnn. 74
Experimental features............coevvinennnn 79
Failover Protocol Support.........cccvevvnene. 68
FPCUNIt. ..o 8, 60
Free Pascal.......ccoooviiiiiiiiiiiiii e 8
HABARI_SSL_SUPPORT......ccvivviieiinnnnen 66
IHeartbeat.......ccoviiiiii 49
IMapMessage.....covvviiiiiiiii i 84
IMQCONSUMENeii i 47
IMQCoNteXt. ..o 46
IMQProduUCEr....civii i i e 46
Internet Direct (Indy)...ccovvviiiiiiiiiiinninnn, 8
IJMSCorrelationID........ccvvvviiiiiiiiinnennns 37
JMSDeliveryMode........ccvviviiiiiiiiiiiinenn, 37
JMSEXpiration......ccoooiiiiiiiiiice e 37
JMSMessageld.......oooviiiiiiiiiiiieeeeaee 38
JMSPIOFEY . e 37
IMSREPIYTO..evviiiiii i 37f., 84
JMSTIimestamp....ovveeeiiiici e 37
Limitations......ccovviiiiiiiiiii 71

Index 89

(o« o 1 T A 62
LoggingHelper......ccvviviiiiiiiinie e 62
Map MESSAgEeS....iiiiiiirriiriiiirrri i 40
MapMessageTransformerTests................ 43
Message propertiesS......covvvviiiiiinenniinnnns 71
MessageConSUMEr......ovvviveeeenninnnns 13, 33
MessageProducer...........covviiivinnnnn. 13, 32
Object Message........ccvvvvviviiiiiinnnnn. 44, 81
ObjectMessageTransformerTests............ 45
OpPEeNSSL. . i 66
Point-to-point........cccoviiiii 30
Publish-and-subscribe................ooovnel. 30
QUEBUE. . e 30
ReECEIVE. ..t e 33
ReceiveHeartbeat...........ccooiiiiininns 50
ReceiveNoWait.........ccoevvvvivvniiiiiiiiines 34
SeleCtor. .o 71
SeleCtOrS. . it 39
SendHeartbeat.........cooiiiiinn 49
1Y =17 1o 1 13, 25
SetDefaultAdapter.......coovvviiiviiiinnnnnns 66
Simplelogger....ccviiiiiiiiiiiiiiii e 63
Socket error 10054.......cciiiiiiiiiiiiieenns 88
Socket error 10060.........cccivviiiiiieiienns 87
Socket error 10061.......ccvvviiviiiiieiiinennns 87
SSL/TLS. i 79
StOMP 1.2, 48
15187 0] 0 1e] o 79
3V L= = T R 8
TCP i 71
Test destinations........ccooeiiiiiiennn 61
TOPIC ettt e 31
TopicSubscriber......covviviiiiii e 35
Transacted Sessions.........ccevvviiinnnn 27,72
TransactionS.....vviiie i e 71
Virtual host..ovviiiii 48

90 Habari STOMP Client for ActiveMQ 9.4

Table Index

(o] an]an[STa]Tet=Tu o] a Yo F=] o] (=] o PR 12
SESSION CreatioN ParamM LS. .. i e e 27
Example Applications (in alphabetic order)o 52
ConsumerTool Command Line OptioNS.....ooiiiriiiiiiii e v r e neenne s 53
ProducerTool Command Line OptioNS.cviiiiiiii i riee e e ranerneernenneanes 55
Throughput Test Tool Command Line OptioNS.....ciieiiiiii i i e e raneaas 58
Communication Adapters With SSL/TLS SUPPOIt.. ..t iiiii it i i i e aiaeeeaaas 65
= 11 Lo AV =Tl =Y 1= 0T ol o) o o T 68
Advanced Demo ApPliCatiONS. ... 83

lllustration Index

Illustration 1: ConsumerTool demo application........coeviiiiiiiii e 54
Illustration 2: ProducerTool demo application........ccvviriiiiiii i e e e 55
Illustration 3: Performance test example application.........covviiiiiiii i 57
Illustration 4: PingBroker example application.......ccoiviiiiiiiii e 58

Illustration 5: Throughput test tool oUtpUL.....ccviiriii e 59

	Broker-specific information
	Installation
	Requirements
	Development Environment
	TCP/IP Communication Library
	Test Suites

	Installation steps

	Directory structure
	Breaking Changes in Version 8.0 and 9.0
	Major changes
	Other potentially breaking changes
	Noteworthy changes in unsupported and experimental code
	Synapse

	Breaking Changes in Version 9.0

	Communication Adapters
	Introduction
	Configuration of communication adapters
	Registration of communication adapter class
	Available communication adapters

	The Programming Model
	Classic and modern API
	Classic API
	Modern API

	Tutorials
	Quick Start Tutorial
	Setting up the project
	Adding code to the project
	Run the demo
	Check for memory leaks
	Tutorial source code

	Connection Factory
	Overview
	Creation and configuration
	Connection URL parameters
	Heart-beating Support

	Receipt Support
	SUBSCRIBE Receipt
	UNSUBSCRIBE Receipt
	SEND Receipt
	DISCONNECT Receipt

	Connections and Sessions
	Connections use Stomp 1.2 by default
	Step-by-Step Example
	Overview
	Add required units
	Creating a new Connection
	Connection URL Parameters
	Creating a Session
	Using the Session
	Closing a Connection

	Session types overview
	Transacted Sessions
	Create a transacted session
	Send messages
	Committing a transaction
	Rolling back a transaction
	Transacted message acknowledgement

	Destinations
	Introduction
	Create a new Destination
	Queues
	Topics

	Producer and Consumer
	Message Producer
	Persistent messages

	Message Consumer
	Message Selector

	Synchronous Receive

	Durable Subscriptions
	Description
	Creation

	Temporary Queues
	Introduction
	Library Support
	Resource Management

	Message Options
	Standard Properties
	Properties for outgoing messages
	Properties for incoming messages

	Reserved property names
	Examples
	Prefix for custom headers

	Selectors
	Supported message brokers

	Map Messages
	Introduction
	Usage Example
	Map Message Transformer
	Transformation Identifier
	Example ProducerTransform implementation with TStrings

	Object Messages
	Introduction
	Object Message Transformer

	Simplified API
	New interface types
	IMQContext interface
	IMQProducer interface
	IMQConsumer interface
	Source code example

	Stomp 1.2
	Connection configuration
	Specification

	Sending heart-beat signals
	Checking for incoming heartbeats
	Reading server-side heartbeats

	Example Applications
	Overview
	Notes

	ConsumerTool
	common-consumertool / common-consumertool-fpc
	Examples

	ProducerTool
	common-producertool / common-producertool-fpc
	Examples

	Delphi Chat
	Performance test
	PingBroker
	Throughput test
	Examples

	Unit Tests
	Introduction
	Test project configuration
	Logging
	Optional units

	Test units
	Test execution
	Requirements
	Test destinations

	STOMP 1.2

	Logging with SLF4P
	Introduction
	IDE and project configuration
	Delphi
	Lazarus

	LoggingHelper unit

	Conditional Symbols
	Experimental or optional features
	HABARI_ALLOW_UNKNOWN_URL_PARAMS
	HABARI_ENABLE_FAILOVER_PROTOCOL
	HABARI_LOGGING
	HABARI_SSL_SUPPORT

	SSL/TLS Support
	SSL communication adapter classes
	Mixed Use
	SSL configuration

	Indy SSL Demo
	Notes
	Troubleshooting
	Example output

	Support

	Failover Protocol Support
	Requirements
	Failover Transport Options

	Useful Units
	BTStreamHelper unit
	BTJavaPlatform unit

	Library Limitations
	MessageConsumer
	How do I implement synchronous receive from multiple destinations?

	Message properties
	Only string data type supported by Stomp

	Multi threading
	Free Pascal specific restrictions
	Broker-specific limitations
	Transacted Sessions
	Other broker specific limitations

	Frequently Asked Questions
	Technical questions
	Why am I getting 'undeclared identifier IndyTextEncoding_UTF8'?
	Why am I getting ‘Undeclared identifier: 'TimeSeparator'’?
	Why am I getting 'Found no matching consumer' errors?
	Does the library support non-Unicode Delphi versions?
	How can the client application detect network connection loss?

	Online Resources
	Third-party libraries
	Indy
	Ararat Synapse
	Synopse mORMot
	DUnit
	SLF4P
	JsonDataObjects

	Specifications
	Online articles
	Online Videos

	Support
	Bug reports and support inquiries
	Advanced support

	Broker-specific notes
	Authentication plugin
	Subscription options
	Selectors
	Using numeric selectors to filter messages

	Object Messages
	Object Serialization
	“Delphi Only” vs. “Cross-Language” Object Exchange
	Memory Management

	Broker Specific Demos
	Broker Statistics Example
	Delay and Schedule Message Delivery

	Connection troubleshooting
	Performance demo
	Socket error 10060 (Connection timed out)
	Socket error 10061 (Connection refused)
	Socket error 10054 (Connection reset by peer)

	Index

